Rで分析を行うためにrjagsを使用しています(このブログ投稿に基づいています:http://www.sumsar.net/blog/2013/08/bayesian-estimation-of-correlation/)そして質問があります. update() を使用してモデルを 500 サンプルで更新することと、元のモデル作成で n.adapt パラメータを 500 ではなく 1000 に設定することとの間に違いはありますか?
つまり、次のことを行う場合、run1 と run2 の間に重要な違いはありますか。
require(mvtnorm)
require(rjags)
model_string <- "
model {
for(i in 1:n) {
x[i,1:2] ~ dmnorm(mu[], prec[ , ])
}
prec[1:2,1:2] <- inverse(cov[,])
cov[1,1] <- sigma[1] * sigma[1]
cov[1,2] <- sigma[1] * sigma[2] * rho
cov[2,1] <- sigma[1] * sigma[2] * rho
cov[2,2] <- sigma[2] * sigma[2]
sigma[1] ~ dunif(0, 1000)
sigma[2] ~ dunif(0, 1000)
rho ~ dunif(-1, 1)
mu[1] ~ dnorm(0, 0.001)
mu[2] ~ dnorm(0, 0.001)
x_rand ~ dmnorm(mu[], prec[ , ])
}
"
mu <- c(10, 30)
sigma <- c(20, 40)
rho <- -0.7
cov_mat <- rbind(c( sigma[1]^2 , sigma[1]*sigma[2]*rho ),
c( sigma[1]*sigma[2]*rho, sigma[2]^2 ))
x <- rmvnorm(30, mu, cov_mat)
data_list = list(x = x, n = nrow(x))
inits_list = list(mu = c(mean(x[, 1]), mean(x[, 2])),
rho = cor(x[, 1], x[, 2]),
sigma = c(sd(x[, 1]), sd(x[, 1])))
jags_model <- jags.model(textConnection(model_string), data = data_list, inits = inits_list,
n.adapt = 500, n.chains = 3, quiet = T)
update(jags_model, 500)
mcmc_samples <- coda.samples(jags_model, c("mu", "rho", "sigma", "x_rand"),
n.iter = 5000)
run1<-summary(mcmc_samples)
jags_model <- jags.model(textConnection(model_string), data = data_list, inits = inits_list,
n.adapt = 1000, n.chains = 3, quiet = T)
mcmc_samples <- coda.samples(jags_model, c("mu", "rho", "sigma", "x_rand"),
n.iter = 5000)
run2<-summary(mcmc_samples)