リファレンス マニュアルで説明されているタクティック表記法を使用できます。例えば、
Tactic Notation "foo" simple_intropattern(bar) :=
match goal with
| H : ?A /\ ?B |- _ =>
destruct H as bar
end.
Goal True /\ True /\ True -> True.
intros. foo (HA & HB & HC).
このディレクティブは、イントロ パターンとしてsimple_intropattern
解釈するように Coq に指示します。bar
したがって、 を呼び出すと、 が呼び出されfoo
ますdestruct H as (HA & HB & HC)
。
より複雑な導入パターンを示す長い例を次に示します。
Tactic Notation "my_destruct" hyp(H) "as" simple_intropattern(pattern) :=
destruct H as pattern.
Inductive wondrous : nat -> Prop :=
| one : wondrous 1
| half : forall n k : nat, n = 2 * k -> wondrous k -> wondrous n
| triple_one : forall n k : nat, 3 * n + 1 = k -> wondrous k -> wondrous n.
Lemma oneness : forall n : nat, n = 0 \/ wondrous n.
Proof.
intro n.
induction n as [ | n IH_n ].
(* n = 0 *)
left. reflexivity.
(* n <> 0 *)
right. my_destruct IH_n as
[ H_n_zero
| [
| n' k H_half H_wondrous_k
| n' k H_triple_one H_wondrous_k ] ].
Admitted.
生成された目標の 1 つを調べて、名前がどのように使用されているかを確認できます。
oneness < Show 4.
subgoal 4 is:
n : nat
n' : nat
k : nat
H_triple_one : 3 * n' + 1 = k
H_wondrous_k : wondrous k
============================
wondrous (S n')