22

glmnet で次のコードを使用しています。

> library(glmnet)
> fit = glmnet(as.matrix(mtcars[-1]), mtcars[,1])
> plot(fit, xvar='lambda')

ここに画像の説明を入力

ただし、リッジ回帰で行われるように、せいぜい Lambda で係数を出力したいと思います。次の適合構造が表示されます。

> str(fit)
List of 12
 $ a0       : Named num [1:79] 20.1 21.6 23.2 24.7 26 ...
  ..- attr(*, "names")= chr [1:79] "s0" "s1" "s2" "s3" ...
 $ beta     :Formal class 'dgCMatrix' [package "Matrix"] with 6 slots
  .. ..@ i       : int [1:561] 0 4 0 4 0 4 0 4 0 4 ...
  .. ..@ p       : int [1:80] 0 0 2 4 6 8 10 12 14 16 ...
  .. ..@ Dim     : int [1:2] 10 79
  .. ..@ Dimnames:List of 2
  .. .. ..$ : chr [1:10] "cyl" "disp" "hp" "drat" ...
  .. .. ..$ : chr [1:79] "s0" "s1" "s2" "s3" ...
  .. ..@ x       : num [1:561] -0.0119 -0.4578 -0.1448 -0.7006 -0.2659 ...
  .. ..@ factors : list()
 $ df       : int [1:79] 0 2 2 2 2 2 2 2 2 3 ...
 $ dim      : int [1:2] 10 79
 $ lambda   : num [1:79] 5.15 4.69 4.27 3.89 3.55 ...
 $ dev.ratio: num [1:79] 0 0.129 0.248 0.347 0.429 ...
 $ nulldev  : num 1126
 $ npasses  : int 1226
 $ jerr     : int 0
 $ offset   : logi FALSE
 $ call     : language glmnet(x = as.matrix(mtcars[-1]), y = mtcars[, 1])
 $ nobs     : int 32
 - attr(*, "class")= chr [1:2] "elnet" "glmnet"

しかし、最適な Lambda と対応する係数を取得できません。ご協力いただきありがとうございます。

4

3 に答える 3

21

これを試して:

fit = glmnet(as.matrix(mtcars[-1]), mtcars[,1], 
    lambda=cv.glmnet(as.matrix(mtcars[-1]), mtcars[,1])$lambda.1se)
coef(fit)

または、次のようにラムダ値を指定できますcoef

fit = glmnet(as.matrix(mtcars[-1]), mtcars[,1])
coef(fit, s = cv.glmnet(as.matrix(mtcars[-1]), mtcars[,1])$lambda.1se)

「最良の」ラムダを選択する必要があり、選択するlambda.1seのが合理的または正当なものです。しかし、あなたcv.glmnet(as.matrix(mtcars[-1]), mtcars[,1])$lambda.minにとって「最良」であるラムダの他の値を使用することもできます。

于 2015-06-01T04:10:49.910 に答える