56

サブリストを含むリストを反復処理するために Java 8 ストリームを使用しています。外側のリストのサイズは 100 から 1000 の間で変化し (さまざまなテスト実行)、内側のリストのサイズは常に 5 です。

予期しないパフォーマンス偏差を示す 2 つのベンチマーク実行があります。

package benchmark;

import org.openjdk.jmh.annotations.*;
import org.openjdk.jmh.infra.Blackhole;

import java.io.IOException;
import java.util.concurrent.ThreadLocalRandom;
import java.util.*;
import java.util.function.*;
import java.util.stream.*;

@Threads(32)
@Warmup(iterations = 25)
@Measurement(iterations = 5)
@State(Scope.Benchmark)
@Fork(1)
@BenchmarkMode(Mode.Throughput)
public class StreamBenchmark {
    @Param({"700", "600", "500", "400", "300", "200", "100"})
    int outerListSizeParam;
    final static int INNER_LIST_SIZE = 5;
    List<List<Integer>> list;

    Random rand() {
        return ThreadLocalRandom.current();
    }

    final BinaryOperator<Integer> reducer = (val1, val2) -> val1 + val2;

    final Supplier<List<Integer>> supplier = () -> IntStream
            .range(0, INNER_LIST_SIZE)
            .mapToObj(ptr -> rand().nextInt(100))
            .collect(Collectors.toList());

    @Setup
    public void init() throws IOException {
        list = IntStream
                .range(0, outerListSizeParam)
                .mapToObj(i -> supplier.get())
                .collect(Collectors.toList());
    }

    @Benchmark
    public void loop(Blackhole bh) throws Exception {
        List<List<Integer>> res = new ArrayList<>();
        for (List<Integer> innerList : list) {
            if (innerList.stream().reduce(reducer).orElse(0) == rand().nextInt(2000)) {
                res.add(innerList);
            }
        }

        bh.consume(res);
    }

    @Benchmark
    public void stream(Blackhole bh) throws Exception {
        List<List<Integer>> res = list
                .stream()
                .filter(innerList -> innerList.stream().reduce(reducer).orElse(0) == rand().nextInt(2000))
                .collect(Collectors.toList());

        bh.consume(res);
    }
}

実行 1

    Benchmark               (outerListSizeParam)   Mode  Cnt        Score        Error  Units
    StreamBenchmark.loop                     700  thrpt    5    22488.601 ?   1128.543  ops/s
    StreamBenchmark.loop                     600  thrpt    5    26010.430 ?   1161.854  ops/s
    StreamBenchmark.loop                     500  thrpt    5   361837.395 ?  12777.016  ops/s
    StreamBenchmark.loop                     400  thrpt    5   451774.457 ?  22517.801  ops/s
    StreamBenchmark.loop                     300  thrpt    5   744677.723 ?  23456.913  ops/s
    StreamBenchmark.loop                     200  thrpt    5  1102075.707 ?  38678.994  ops/s
    StreamBenchmark.loop                     100  thrpt    5  2334981.090 ? 100973.551  ops/s
    StreamBenchmark.stream                   700  thrpt    5    22320.346 ?    496.432  ops/s
    StreamBenchmark.stream                   600  thrpt    5    26091.609 ?   1044.868  ops/s
    StreamBenchmark.stream                   500  thrpt    5    31961.096 ?    497.854  ops/s
    StreamBenchmark.stream                   400  thrpt    5   377701.859 ?  11115.990  ops/s
    StreamBenchmark.stream                   300  thrpt    5    53887.652 ?   1228.245  ops/s
    StreamBenchmark.stream                   200  thrpt    5    78754.294 ?   2173.316  ops/s
    StreamBenchmark.stream                   100  thrpt    5  1564899.788 ?  47369.698  ops/s

実行 2

    Benchmark               (outerListSizeParam)   Mode  Cnt        Score       Error  Units
    StreamBenchmark.loop                    1000  thrpt   10    16179.702 ?   260.134  ops/s
    StreamBenchmark.loop                     700  thrpt   10    22924.319 ?   329.134  ops/s
    StreamBenchmark.loop                     600  thrpt   10    26871.267 ?   416.464  ops/s
    StreamBenchmark.loop                     500  thrpt   10   353043.221 ?  6628.980  ops/s
    StreamBenchmark.loop                     300  thrpt   10   772234.261 ? 10075.536  ops/s
    StreamBenchmark.loop                     100  thrpt   10  2357125.442 ? 30824.834  ops/s
    StreamBenchmark.stream                  1000  thrpt   10    15526.423 ?   147.454  ops/s
    StreamBenchmark.stream                   700  thrpt   10    22347.898 ?   117.360  ops/s
    StreamBenchmark.stream                   600  thrpt   10    26172.790 ?   229.745  ops/s
    StreamBenchmark.stream                   500  thrpt   10    31643.518 ?   428.680  ops/s
    StreamBenchmark.stream                   300  thrpt   10   536037.041 ?  6176.192  ops/s
    StreamBenchmark.stream                   100  thrpt   10   153619.054 ?  1450.839  ops/s

2 つの質問があります。

  1. 両方のテスト実行で、loop+500 と loop+600 の間に一貫して大きなパフォーマンスの違いがあるのはなぜですか?
  2. Run1 ストリーム + 400 と Run2 ストリーム + 300 で、一貫性のない重大なパフォーマンス偏差があるのはなぜですか?

JIT は時々最適化の決定を下し、パフォーマンスが大幅に低下するようです。

テスト マシンには 128 GB の RAM と 32 個の CPU コアがあります。

    java version "1.8.0_45"
    Java(TM) SE Runtime Environment (build 1.8.0_45-b14)
    Java HotSpot(TM) 64-Bit Server VM (build 25.45-b02, mixed mode)

    Architecture:          x86_64
    CPU op-mode(s):        32-bit, 64-bit
    Byte Order:            Little Endian
    CPU(s):                32
    On-line CPU(s) list:   0-31
    Thread(s) per core:    2
    Core(s) per socket:    8
    Socket(s):             2
    NUMA node(s):          2
    Vendor ID:             GenuineIntel
    CPU family:            6
    Model:                 62
    Model name:            Intel(R) Xeon(R) CPU E5-2650 v2 @ 2.60GHz
    Stepping:              4
    CPU MHz:               1201.078
    CPU max MHz:           3400.0000
    CPU min MHz:           1200.0000
    BogoMIPS:              5201.67
    Virtualization:        VT-x
    L1d cache:             32K
    L1i cache:             32K
    L2 cache:              256K
    L3 cache:              20480K
    NUMA node0 CPU(s):     0-7,16-23
    NUMA node1 CPU(s):     8-15,24-31

PS ストリームなしでベンチマークを追加しました。これらのテスト (ループ + ストリーム + pureLoop) では、ストリームとラムダを使用するには多くのマイクロ最適化作業が必要であり、いずれにしても一貫したパフォーマンスは保証されないと思います。

@Benchmark
public void pureLoop(Blackhole bh) throws Exception {
    List<List<Integer>> res = new ArrayList<>();
    for (List<Integer> innerList : list) {
        int sum = 0;
        for (Integer i : innerList) {
            sum += i;
        }
        if (sum == rand().nextInt(2000))
            res.add(innerList);
    }

    bh.consume(res);
}

実行 3 (純粋なループ)

Benchmark                 (outerListSizeParam)   Mode  Cnt         Score        Error  Units
StreamBenchmark.loop                      1000  thrpt    5     15848.277 ?    445.624  ops/s
StreamBenchmark.loop                       700  thrpt    5     22330.289 ?    484.554  ops/s
StreamBenchmark.loop                       600  thrpt    5     26353.565 ?    631.421  ops/s
StreamBenchmark.loop                       500  thrpt    5    358144.956 ?   8273.981  ops/s
StreamBenchmark.loop                       400  thrpt    5    591471.382 ?  17725.212  ops/s
StreamBenchmark.loop                       300  thrpt    5    785458.022 ?  23775.650  ops/s
StreamBenchmark.loop                       200  thrpt    5   1192328.880 ?  40006.056  ops/s
StreamBenchmark.loop                       100  thrpt    5   2330555.766 ?  73143.081  ops/s
StreamBenchmark.pureLoop                  1000  thrpt    5   1024629.128 ?   4387.106  ops/s
StreamBenchmark.pureLoop                   700  thrpt    5   1495365.029 ?  31659.941  ops/s
StreamBenchmark.pureLoop                   600  thrpt    5   1787432.825 ?  16611.868  ops/s
StreamBenchmark.pureLoop                   500  thrpt    5   2087093.023 ?  20143.165  ops/s
StreamBenchmark.pureLoop                   400  thrpt    5   2662946.999 ?  33326.079  ops/s
StreamBenchmark.pureLoop                   300  thrpt    5   3657830.227 ?  55020.775  ops/s
StreamBenchmark.pureLoop                   200  thrpt    5   5365706.786 ?  64404.783  ops/s
StreamBenchmark.pureLoop                   100  thrpt    5  10477430.730 ? 187641.413  ops/s
StreamBenchmark.stream                    1000  thrpt    5     15576.304 ?    250.620  ops/s
StreamBenchmark.stream                     700  thrpt    5     22286.965 ?   1153.734  ops/s
StreamBenchmark.stream                     600  thrpt    5     26109.258 ?    296.382  ops/s
StreamBenchmark.stream                     500  thrpt    5     31343.986 ?   1270.210  ops/s
StreamBenchmark.stream                     400  thrpt    5     39696.775 ?   1812.355  ops/s
StreamBenchmark.stream                     300  thrpt    5    536932.353 ?  41249.909  ops/s
StreamBenchmark.stream                     200  thrpt    5     77797.301 ?    976.641  ops/s
StreamBenchmark.stream                     100  thrpt    5    155387.348 ?   3182.841  ops/s

解決策: apangin が推奨するように、階層化されたコンパイル無効にすると、JIT の結果が安定しました。

java -XX:-TieredCompilation -jar test-jmh.jar

Benchmark                 (outerListSizeParam)   Mode  Cnt         Score        Error  Units
StreamBenchmark.loop                      1000  thrpt    5    160410.288 ?   4426.320  ops/s
StreamBenchmark.loop                       700  thrpt    5    230524.018 ?   4426.740  ops/s
StreamBenchmark.loop                       600  thrpt    5    266266.663 ?   9078.827  ops/s
StreamBenchmark.loop                       500  thrpt    5    324182.307 ?   8452.368  ops/s
StreamBenchmark.loop                       400  thrpt    5    400793.677 ?  12526.475  ops/s
StreamBenchmark.loop                       300  thrpt    5    534618.231 ?  25616.352  ops/s
StreamBenchmark.loop                       200  thrpt    5    803314.614 ?  33108.005  ops/s
StreamBenchmark.loop                       100  thrpt    5   1827400.764 ?  13868.253  ops/s
StreamBenchmark.pureLoop                  1000  thrpt    5   1126873.129 ?  33307.600  ops/s
StreamBenchmark.pureLoop                   700  thrpt    5   1560200.150 ? 150146.319  ops/s
StreamBenchmark.pureLoop                   600  thrpt    5   1848113.823 ?  16195.103  ops/s
StreamBenchmark.pureLoop                   500  thrpt    5   2250201.116 ? 130995.240  ops/s
StreamBenchmark.pureLoop                   400  thrpt    5   2839212.063 ? 142008.523  ops/s
StreamBenchmark.pureLoop                   300  thrpt    5   3807436.825 ? 140612.798  ops/s
StreamBenchmark.pureLoop                   200  thrpt    5   5724311.256 ?  77031.417  ops/s
StreamBenchmark.pureLoop                   100  thrpt    5  11718427.224 ? 101424.952  ops/s
StreamBenchmark.stream                    1000  thrpt    5     16186.121 ?    249.806  ops/s
StreamBenchmark.stream                     700  thrpt    5     22071.884 ?    703.729  ops/s
StreamBenchmark.stream                     600  thrpt    5     25546.378 ?    472.804  ops/s
StreamBenchmark.stream                     500  thrpt    5     32271.659 ?    437.048  ops/s
StreamBenchmark.stream                     400  thrpt    5     39755.841 ?    506.207  ops/s
StreamBenchmark.stream                     300  thrpt    5     52309.706 ?   1271.206  ops/s
StreamBenchmark.stream                     200  thrpt    5     79277.532 ?   2040.740  ops/s
StreamBenchmark.stream                     100  thrpt    5    161244.347 ?   3882.619  ops/s
4

1 に答える 1

70

この影響はType Profile Pollutionによって引き起こされます。簡単なベンチマークで説明しましょう。

@State(Scope.Benchmark)
public class Streams {
    @Param({"500", "520"})
    int iterations;

    @Setup
    public void init() {
        for (int i = 0; i < iterations; i++) {
            Stream.empty().reduce((x, y) -> x);
        }
    }

    @Benchmark
    public long loop() {
        return Stream.empty().count();
    }
}

ここでのパラメーターはごくわずかに変化し、メインのベンチマーク ループには影響しませiterationんが、結果は非常に驚くべき 2.5 倍のパフォーマンス低下を示しています。

Benchmark     (iterations)   Mode  Cnt      Score     Error   Units
Streams.loop           500  thrpt    5  29491,039 ± 240,953  ops/ms
Streams.loop           520  thrpt    5  11867,860 ± 344,779  ops/ms

次に、オプションを指定してJMH を実行し-prof perfasm、最もホットなコード領域を確認します。

高速ケース (反復 = 500):

....[Hottest Methods (after inlining)]..................................
 48,66%  bench.generated.Streams_loop::loop_thrpt_jmhStub
 23,14%  <unknown>
  2,99%  java.util.stream.Sink$ChainedReference::<init>
  1,98%  org.openjdk.jmh.infra.Blackhole::consume
  1,68%  java.util.Objects::requireNonNull
  0,65%  java.util.stream.AbstractPipeline::evaluate

遅いケース (反復 = 520):

....[Hottest Methods (after inlining)]..................................
 40,09%  java.util.stream.ReduceOps$ReduceOp::evaluateSequential
 22,02%  <unknown>
 17,61%  bench.generated.Streams_loop::loop_thrpt_jmhStub
  1,25%  org.openjdk.jmh.infra.Blackhole::consume
  0,74%  java.util.stream.AbstractPipeline::evaluate

遅いケースは、ReduceOp.evaluateSequentialインライン化されていないメソッドで最も多くの時間を費やしているようです。さらに、このメソッドのアセンブリ コードを調べると、最長の操作がcheckcast.

HotSpot コンパイラがどのように機能するかはご存知のとおりです。JIT が開始される前に、メソッドがインタプリタでしばらく実行されてプロファイル データが収集されます。たとえば、どのメソッドが呼び出され、どのクラスが表示され、どのブランチが取得されるかなどです。階層型コンパイルでは、プロファイルは次のようになります。 C1 でコンパイルされたコードでも収集されます。このプロファイルは、C2 向けに最適化されたコードを生成するために使用されます。ただし、アプリケーションが途中で実行パターンを変更した場合、生成されたコードは変更された動作に対して最適ではない可能性があります。

-XX:+PrintMethodData(デバッグ JVM で使用可能) を使用して、実行プロファイルを比較してみましょう。

----- Fast case -----
java.util.stream.ReduceOps$ReduceOp::evaluateSequential(Ljava/util/stream/PipelineHelper;Ljava/util/Spliterator;)Ljava/lang/Object;
  interpreter_invocation_count:    13382 
  invocation_counter:              13382 
  backedge_counter:                    0 
  mdo size: 552 bytes

0 aload_1
1 fast_aload_0
2 invokevirtual 3 <java/util/stream/ReduceOps$ReduceOp.makeSink()Ljava/util/stream/ReduceOps$AccumulatingSink;> 
  0   bci: 2    VirtualCallData     count(0) entries(1)
                                    'java/util/stream/ReduceOps$8'(12870 1.00)
5 aload_2
6 invokevirtual 4 <java/util/stream/PipelineHelper.wrapAndCopyInto(Ljava/util/stream/Sink;Ljava/util/Spliterator;)Ljava/util/stream/Sink;> 
  48  bci: 6    VirtualCallData     count(0) entries(1)
                                    'java/util/stream/ReferencePipeline$5'(12870 1.00)
9 checkcast 5 <java/util/stream/ReduceOps$AccumulatingSink>
  96  bci: 9    ReceiverTypeData    count(0) entries(1)
                                    'java/util/stream/ReduceOps$8ReducingSink'(12870 1.00)
12 invokeinterface 6 <java/util/stream/ReduceOps$AccumulatingSink.get()Ljava/lang/Object;> 
  144 bci: 12   VirtualCallData     count(0) entries(1)
                                    'java/util/stream/ReduceOps$8ReducingSink'(12870 1.00)
17 areturn

----- Slow case -----
java.util.stream.ReduceOps$ReduceOp::evaluateSequential(Ljava/util/stream/PipelineHelper;Ljava/util/Spliterator;)Ljava/lang/Object;
  interpreter_invocation_count:    54751 
  invocation_counter:              54751 
  backedge_counter:                    0 
  mdo size: 552 bytes

0 aload_1
1 fast_aload_0
2 invokevirtual 3 <java/util/stream/ReduceOps$ReduceOp.makeSink()Ljava/util/stream/ReduceOps$AccumulatingSink;> 
  0   bci: 2    VirtualCallData     count(0) entries(2)
                                    'java/util/stream/ReduceOps$2'(16 0.00)
                                    'java/util/stream/ReduceOps$8'(54223 1.00)
5 aload_2
6 invokevirtual 4 <java/util/stream/PipelineHelper.wrapAndCopyInto(Ljava/util/stream/Sink;Ljava/util/Spliterator;)Ljava/util/stream/Sink;> 
  48  bci: 6    VirtualCallData     count(0) entries(2)
                                    'java/util/stream/ReferencePipeline$Head'(16 0.00)
                                    'java/util/stream/ReferencePipeline$5'(54223 1.00)
9 checkcast 5 <java/util/stream/ReduceOps$AccumulatingSink>
  96  bci: 9    ReceiverTypeData    count(0) entries(2)
                                    'java/util/stream/ReduceOps$2ReducingSink'(16 0.00)
                                    'java/util/stream/ReduceOps$8ReducingSink'(54228 1.00)
12 invokeinterface 6 <java/util/stream/ReduceOps$AccumulatingSink.get()Ljava/lang/Object;> 
  144 bci: 12   VirtualCallData     count(0) entries(2)
                                    'java/util/stream/ReduceOps$2ReducingSink'(16 0.00)
                                    'java/util/stream/ReduceOps$8ReducingSink'(54228 1.00)
17 areturn

ご覧のとおり、初期化ループの実行時間が長すぎて、その統計が実行プロファイルに表示されました。すべての仮想メソッドには 2 つの実装があり、checkcast にも 2 つの異なるエントリがあります。高速の場合、プロファイルは汚染されていません。すべてのサイトはモノモーフィックであり、JIT はそれらを簡単にインライン化して最適化できます。

同じことが元のベンチマークにも当てはまりinit()ます。メソッドでのストリーム操作が長くなり、プロファイルが汚染されました。プロファイルと階層化されたコンパイル オプションを試してみると、結果はまったく異なるものになる可能性があります。たとえば、試してみてください

  1. -XX:-ProfileInterpreter
  2. -XX:Tier3InvocationThreshold=1000
  3. -XX:-TieredCompilation

最後に、この問題は固有のものではありません。プロファイル汚染によるパフォーマンス低下に関連する複数の JVM バグがすでに存在します: JDK-8015416JDK-8015417JDK-8059879 ... これが Java 9 で改善されることを願っています。

于 2015-06-09T01:50:53.257 に答える