printf("%.3lf\n", -0.0001);
これは を出力-0.000
しますが、そうすべきではありません0.000
か?
マイナス記号なしでこの印刷を行うにはどうすればよい0.000
ですか?
printf("%.3lf\n", -0.0001);
これは を出力-0.000
しますが、そうすべきではありません0.000
か?
マイナス記号なしでこの印刷を行うにはどうすればよい0.000
ですか?
C++は Cprintf
から継承します。C11 標準§7.21.6.1fprintf
関数では、脚注には次のように記載されています。
負のゼロ、およびゼロに丸められる負の値のすべての浮動変換の結果には、マイナス記号が含まれます。
float 表現 ( https://en.wikipedia.org/wiki/Floating_point ) には符号ビットがあります。printf を実装した人は、印刷された数字がすべて 0 の場合でも明示的に配置することにしました。
正しい答えはすでに与えられています。c++ cout から同じことが得られることを追加したかっただけです
サインを取り除きたい場合は、次のように実行できます。
double fixSign(double d)
{
std::ostringstream strs;
strs << std::fixed << std::setprecision(3) << d;
std::string str = strs.str();
if (str == "-0.000") return 0.0;
return d;
}
int main()
{
double d=-0.0001;
printf("%.3lf\n", d);
cout << std::fixed << std::setprecision(3) << d << endl;
cout << std::fixed << std::setprecision(3) << fixSign(d) << endl;
return 0;
}
出力:
-0.000
-0.000
0.000
EDIT
これは文字列に変換せずに行うことができますか?
どうですか:
#define PRE 3
#define LIMIT -0.0005 // Must have PRE zeros after the decimal point
// VERSION WITHOUT USE OF STRING
double fixSign_v2(double d)
{
if ((d < 0) && (d > LIMIT)) return 0;
return d;
}
double fixSign(double d)
{
std::ostringstream strs;
strs << std::fixed << std::setprecision(PRE) << d;
std::string str = strs.str();
if (str == "-0.000") return 0.0;
return d;
}
int main()
{
// PRE == 2
//double d1=-0.005;
//double d2=-0.0049999999999;
// PRE == 3
double d1=-0.0005;
double d2=-0.000499999999999;
// PRE == 10
//double d1=-0.00000000005;
//double d2=-0.0000000000499999999;
cout << std::fixed << std::setprecision(PRE+20) << d1 << endl;
cout << std::fixed << std::setprecision(PRE) << fixSign(d1) << endl;
cout << std::fixed << std::setprecision(PRE) << fixSign_v2(d1) << endl;
cout << "------------------------" << endl;
cout << std::fixed << std::setprecision(PRE) << d2 << endl;
cout << std::fixed << std::setprecision(PRE) << fixSign(d2) << endl;
cout << std::fixed << std::setprecision(PRE) << fixSign_v2(d2) << endl;
return 0;
}
出力:
-0.001
-0.001
-0.001
------------------------
-0.000
0.000
0.000
だからうまくいくようです!
ただし、すべての丸めモードで機能するわけではありません。
したがって、最初のバージョンを文字列変換で使用する方が安全と思われます。
編集:以前の解決策では、問題が解決されませんでした。
template <int precision=0, double(*round_func)(double)=std::round>
double round(double a)
{
auto multiplier = std::pow(10, precision);
a *= multiplier;
a = round_func(a);
if (a == 0.0) return 0.0;
a /= multiplier;
return a;
}
int main()
{
printf("printf: %.3lf\n", -0.0001);
printf("round : %.3lf\n", round<3>(-0.0001));
system("PAUSE");
}
結果: printf: -0.000 round: 0.000
精度と丸めを使用したprintfの比較
int main()
{
printf("printf: %05.2lf\n", 12345.6789);
printf("printf: %05.2lf\n", 12345.1234);
printf("\n");
printf("round : %05.2lf\n", round<2, std::round>(12345.6789));
printf("round : %05.2lf\n", round<2, std::round>(12345.1234));
printf("\n");
printf("floor : %05.2lf\n", round<2, std::floor>(12345.6789));
printf("floor : %05.2lf\n", round<2, std::floor>(12345.1234));
printf("\n");
printf("ceil : %05.2lf\n", round<2, std::ceil>(12345.6789));
printf("ceil : %05.2lf\n", round<2, std::ceil>(12345.1234));
system("PAUSE");
}
結果:
printf: 12345.68
printf: 12345.12
round : 12345.68
round : 12345.12
floor : 12345.67
floor : 12345.12
ceil : 12345.68
ceil : 12345.13
そのため、精度を使用すると、printfも値を丸めるようです。
これを使用して、回答を印刷する前に丸めることができます。
template <int precision>
double round(double a)
{
auto multiplier = std::pow(10, precision);
a *= multiplier;
a = std::round(a);
a /= multiplier;
return a;
}
または、残りを切り取りたい場合は、次のようにします。
template <int precision>
double round_down(double a)
{
auto multiplier = std::pow(10, precision);
a *= multiplier;
a = std::floor(a);
a /= multiplier;
return a;
}
これは負の精度でも機能します:
int main()
{
//Round at precision
printf("%5.4lf\n", round<4>(12345.6789)); //Output = 12345.6789
printf("%5.4lf\n", round<3>(12345.6789)); //Output = 12345.6790
printf("%5.4lf\n", round<2>(12345.6789)); //Output = 12345.6800
printf("%5.4lf\n", round<1>(12345.6789)); //Output = 12345.7000
printf("%5.4lf\n", round<0>(12345.6789)); //Output = 12346.0000
printf("%5.4lf\n", round<-1>(12345.6789)); //Output = 12350.0000
printf("%5.4lf\n", round<-2>(12345.6789)); //Output = 12300.0000
printf("%5.4lf\n", round<-3>(12345.6789)); //Output = 12000.0000
printf("%5.4lf\n", round<-4>(12345.6789)); //Output = 10000.0000
printf("%5.4lf\n", round<-5>(12345.6789)); //Output = 0.0000
//Cut off/Round down after precision
printf("%5.4lf\n", round_down<4>(12345.6789)); //Output = 12345.6789
printf("%5.4lf\n", round_down<3>(12345.6789)); //Output = 12345.6780
printf("%5.4lf\n", round_down<2>(12345.6789)); //Output = 12345.6700
printf("%5.4lf\n", round_down<1>(12345.6789)); //Output = 12345.6000
printf("%5.4lf\n", round_down<0>(12345.6789)); //Output = 12345.0000
printf("%5.4lf\n", round_down<-1>(12345.6789)); //Output = 12340.0000
printf("%5.4lf\n", round_down<-2>(12345.6789)); //Output = 12300.0000
printf("%5.4lf\n", round_down<-3>(12345.6789)); //Output = 12000.0000
printf("%5.4lf\n", round_down<-4>(12345.6789)); //Output = 10000.0000
printf("%5.4lf\n", round_down<-5>(12345.6789)); //Output = 0.0000
}
丸めの方法を定義できる代替ソリューション:
template <int precision=0, double(*round_func)(double)=std::round>
double round(double a)
{
auto multiplier = std::pow(10, precision);
a *= multiplier;
a = round_func(a);
a /= multiplier;
return a;
}
int main()
{
printf("%05.4lf\n", round(12345.6789)); //Output = 12345.0000
printf("%05.4lf\n", round<1>(12345.6789)); //Output = 12345.7000
printf("%05.4lf\n", round<1, std::round>(12345.6789)); //Output = 12345.7000
printf("%05.4lf\n", round<1, std::floor>(12345.6789)); //Output = 12345.6000
printf("%05.4lf\n", round<1, std::ceil>(12345.6789)); //Output = 12345.7000
}