randomForest::combine は、変数の重要度の再計算をサポートしていません。randomForest パッケージでは、randomForest::randomForest 関数が終了する直前にのみ重要度が計算されます。次の 2 つのオプションがあります。
組み合わせたフォレストとトレーニング セットを入力として受け取る、独自の変数重要度関数を記述します。これはおよそ 50 行のコードです。
各 randomForest オブジェクトが出力リストの要素である「lapply」のような並列計算を使用します。次に、すべてのフォレストで変数の重要度を集計し、単純に平均を計算します。代わりに foreach ループの外側で do.call(rf.list,combine) を使用してください。この方法は、変数の重要度の合計の概算ですが、非常に優れた方法です。
Windows がサポートするコード例:
library(randomForest)
library(doParallel)
CPUS=6; NTREE=5000
cl = makeCluster(CPUS)
registerDoParallel(cl)
data(iris)
rf.list = foreach(ntree = rep(NTREE/CPUS,CPUS),
.combine=c,
.packages="randomForest") %dopar% {
list(randomForest(Species~.,data=iris,importance=TRUE, ntree=ntree))
}
stopCluster(cl)
big.rf = do.call(combine,rf.list)
big.rf$importance = rf.list[[1]]$importance
for(i in 2:CPUS) big.rf$importance = big.rf$importance + rf.list[[i]]$importance
big.rf$importance = big.rf$importance / CPUS
varImpPlot(big.rf)
#test number of trees in one forest and combined forest, big.rf
print(big.rf) #5000 trees
rf.list[[1]]$ntree
#training single forest
rf.single = randomForest(Species~.,data=iris,ntree=5000,importance=T)
varImpPlot(big.rf)
varImpPlot(rf.single)
#print unscaled variable importance, no large deviations
print(big.rf$importance)
# setosa versicolor virginica MeanDecreaseAccuracy MeanDecreaseGini
# Sepal.Length 0.033184860 0.023506673 0.04043017 0.03241500 9.679552
# Sepal.Width 0.008247786 0.002135783 0.00817186 0.00613059 2.358298
# Petal.Length 0.335508637 0.304525644 0.29786704 0.30933142 43.160074
# Petal.Width 0.330610910 0.307016328 0.27129746 0.30023245 44.043737
print(rf.single$importance)
# setosa versicolor virginica MeanDecreaseAccuracy MeanDecreaseGini
# Sepal.Length 0.031771614 0.0236603417 0.03782824 0.031049531 9.516198
# Sepal.Width 0.008436457 0.0009236979 0.00880401 0.006048261 2.327478
# Petal.Length 0.341879367 0.3090482654 0.29766905 0.312507316 43.786481
# Petal.Width 0.322015885 0.3045458852 0.26885097 0.296227150 43.623370
#but when plotting using varImppLot, scale=TRUE by default
#either simply turn of scaling to get comparable results
varImpPlot(big.rf,scale=F)
varImpPlot(rf.single,scale=F)
#... or correct scaling to the number of trees
big.rf$importanceSD = CPUS^-.5 * big.rf$importanceSD
#and now there are no large differences for scaled variable importance either
varImpPlot(big.rf,scale=T)
varImpPlot(rf.single,scale=T)