エルミート補間の問題
与えられた x のセットの関数値と導関数値のニュートン除算差を見つけようとしています。私のコードは小さな例では機能しますが、大きな例では失敗します。はっきりとわかるように、私の答えは元の関数値よりもはるかに大きくなっています。
誰かが私が間違っていることを知っていますか?
program inter
implicit none
integer ::n,m
integer ::i
real(kind=8),allocatable ::xVals(:),fxVals(:),newtonDivDiff(:),dxVals(:),zxVals(:),zdxVals(:),zfxVals(:)
real(kind=8) ::Px
real(kind=8) ::x
Open(Unit=8,File="data/xVals")
Open(Unit=9,File="data/fxVals")
Open(Unit=10,File="data/dxVals")
n = 4 ! literal number of data pts
m = n*2+1
!after we get the data points allocate the space
allocate(xVals(0:n))
allocate(fxVals(0:n))
allocate(dxVals(0:n))
allocate(newtonDivDiff(0:n))
!allocate the zvalue arrays
allocate(zxVals(0:m))
allocate(zdxVals(0:m))
allocate(zfxVals(0:m))
!since the size is the same we can read in one loop
do i=0,n
Read(8,*) xVals(i)
Read(9,*) fxVals(i)
Read(10,*) dxVals(i)
end do
! contstruct the z illusion
do i=0,m,2
zxVals(i) = xVals(i/2)
zxVals(i+1) = xVals(i/2)
zdxVals(i) = dxVals(i/2)
zdxVals(i+1) = dxVals(i/2)
zfxVals(i) = fxVals(i/2)
zfxVals(i+1) = fxVals(i/2)
end do
!slightly modified business as usual
call getNewtonDivDiff(zxVals,zdxVals,zfxVals,newtonDivDiff,m)
do i=0,n
call evaluatePolynomial(m,newtonDivDiff,xVals(i),Px,zxVals)
print*, xVals(i) ,Px
end do
close(8)
close(9)
close(10)
stop
deallocate(xVals,fxVals,dxVals,newtonDivDiff,zxVals,zdxVals,zfxVals)
end program inter
subroutine getNewtonDivDiff(xVals,dxVals,fxVals,newtonDivDiff,n)
implicit none
integer ::i,k
integer, intent(in) ::n
real(kind=8), allocatable,dimension(:,:) ::table
real(kind=8),intent(in) ::xVals(0:n),dxVals(0:n),fxVals(0:n)
real(kind=8), intent(inout) ::newtonDivDiff(0:n)
allocate(table(0:n,0:n))
table = 0.0d0
do i=0,n
table(i,0) = fxVals(i)
end do
do k=1,n
do i = k,n
if( k .eq. 1 .and. mod(i,2) .eq. 1) then
table(i,k) = dxVals(i)
else
table(i,k) = (table(i,k-1) - table(i-1,k-1))/(xVals(i) - xVals(i-k))
end if
end do
end do
do i=0,n
newtonDivDiff(i) = table(i,i)
!print*, newtonDivDiff(i)
end do
deallocate(table)
end subroutine getNewtonDivDiff
subroutine evaluatePolynomial(n,newtonDivDiff,x,Px,xVals)
implicit none
integer,intent(in) ::n
real(kind=8),intent(in) ::newtonDivDiff(0:n),xVals(0:n)
real(kind=8),intent(in) ::x
real(kind=8), intent(out) ::Px
integer ::i
Px = newtonDivDiff(n)
do i=n,1,-1
Px = Px * (x- xVals(i-1)) + newtonDivDiff(i-1)
end do
end subroutine evaluatePolynomial
値
xf(x) f'(x)
1.16、1.2337、2.6643
1.32、1.6879、2.9989
1.48、2.1814、3.1464
1.64、2.6832、3.0862
1.8、3.1553、2.7697
出力
1.1599999999999999 62.040113431002474
1.3200000000000001 180.40121445431600
1.4800000000000000 212.36319446149312
1.6399999999999999 228.61845650513027
1.8000000000000000 245.11610836104515