私は Python で機械学習を学ぼうとしています - そして lasagne / nolearn パッケージを実行したいと思っています。すべてのパッケージをインストールしました。以下のスクリプトを使用しています ( http://semantive.com/deep-learning-examples/から)。次のエラーが発生します。このエラーを解決する方法を知っている人がいたら教えてください。
スクリプトは、ラザニア モジュールの 1 つのみで初期エラーを返します。
File "<ipython-input-89-2752ae2387c3>", line 11, in <module>
from nolearn.lasagne import visualize
ImportError: cannot import name visualize
その後 - パッド引数の周りにエラーがあります:
Traceback (most recent call last):
File "<ipython-input-90-7a7b6ee7a652>", line 66, in <module>
network = net.fit(x_train, y_train)
File "C:\Users\Anaconda\lib\site-packages\nolearn\lasagne.py", line 138, in fit
out = self._output_layer = self.initialize_layers()
File "C:\Users\Anaconda\lib\site-packages\nolearn\lasagne.py", line 369, in initialize_layers
layer = layer_factory(layer, **layer_params)
File "C:\Users\src\lasagne\lasagne\layers\conv.py", line 368, in __init__
super(Conv2DLayer, self).__init__(incoming, **kwargs)
TypeError: __init__() got an unexpected keyword argument 'pad'
コード
import cPickle as pickle
import os
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import lasagne
from lasagne import layers
from lasagne.updates import nesterov_momentum
from nolearn.lasagne import NeuralNet
from nolearn.lasagne import visualize
from sklearn.metrics import confusion_matrix, classification_report, accuracy_score
def load_data(path):
x_train = np.zeros((50000, 3, 32, 32), dtype='uint8')
y_train = np.zeros((50000,), dtype="uint8")
for i in range(1, 6):
data = unpickle(os.path.join(path, 'data_batch_' + str(i)))
images = data['data'].reshape(10000, 3, 32, 32)
labels = data['labels']
x_train[(i - 1) * 10000:i * 10000, :, :, :] = images
y_train[(i - 1) * 10000:i * 10000] = labels
test_data = unpickle(os.path.join(path, 'test_batch'))
x_test = test_data['data'].reshape(10000, 3, 32, 32)
y_test = np.array(test_data['labels'])
return x_train, y_train, x_test, y_test
def unpickle(file):
f = open(file, 'rb')
dict = pickle.load(f)
f.close()
return dict
net = NeuralNet(
layers=[('input', layers.InputLayer),
('conv2d1', layers.Conv2DLayer),
('maxpool1', layers.MaxPool2DLayer),
('conv2d2', layers.Conv2DLayer),
('maxpool2', layers.MaxPool2DLayer),
('dense', layers.DenseLayer),
('output', layers.DenseLayer),
],
input_shape=(None, 3, 32, 32),
conv2d1_num_filters=20,
conv2d1_filter_size=(5, 5),
conv2d1_stride=(1, 1),
conv2d1_pad=(2, 2),
conv2d1_nonlinearity=lasagne.nonlinearities.rectify,
maxpool1_pool_size=(2, 2),
conv2d2_num_filters=20,
conv2d2_filter_size=(5, 5),
conv2d2_stride=(1, 1),
conv2d2_pad=(2, 2),
conv2d2_nonlinearity=lasagne.nonlinearities.rectify,
maxpool2_pool_size=(2, 2),
dense_num_units=1000,
dense_nonlinearity=lasagne.nonlinearities.rectify,
output_nonlinearity=lasagne.nonlinearities.softmax,
output_num_units=10,
update=nesterov_momentum,
update_momentum=0.9,
update_learning_rate=0.0001,
max_epochs=100,
verbose=True
)
x_train, y_train, x_test, y_test = load_data(os.path.expanduser('~/Dropbox/Python/cifar-10-python.tar/cifar-10-python/cifar-10-batches-py/'))
network = net.fit(x_train, y_train)
predictions = network.predict(x_test)
print classification_report(y_test, predictions)
print accuracy_score(y_test, predictions)