以下は、Tensorboard グラフの視覚化を理解するために形を変えた、単純な学習の例から適用されたコードです。
import tensorflow as tf
import numpy as np
sess = tf.InteractiveSession()
# Create 100 phony x, y data points in NumPy, y = x * 0.1 + 0.3
x_data = np.random.rand(10).astype("float32")
y_data = x_data * 0.1 + 0.3
W = tf.Variable(tf.random_uniform([1], -1.0, 1.0, name = "internal_W"), name = "external_W")
b = tf.Variable(2*tf.zeros([1], name = "internal_b"), name = "doubled_b")
y = (W * x_data + b)
l1 = (y - y_data)
l2 = (y_data - y )
writer = tf.train.SummaryWriter("/tmp/test1", sess.graph_def)
init = tf.initialize_all_variables()
# Launch the graph.
sess = tf.Session()
sess.run(init)
print(sess.run(y))
print('---')
print((y_data))
print('---')
print(sess.run(l1))
print('---')
print(sess.run(l2))
print ステートメントの出力例は次のとおりです。
[ 0.84253538 0.31011301 0.11627766 0.35491142 0.65550905 0.1798114
0.13632762 0.02010157 0.42960873 0.04218956]
---
[ 0.39195824 0.33384719 0.31269109 0.33873668 0.37154531 0.31962547
0.31487945 0.302194 0.3468895 0.30460477]
---
[ 0.45057714 -0.02373418 -0.19641343 0.01617473 0.28396374 -0.13981406
-0.17855182 -0.28209242 0.08271924 -0.2624152 ]
---
[-0.45057714 0.02373418 0.19641343 -0.01617473 -0.28396374 0.13981406
0.17855182 0.28209242 -0.08271924 0.2624152 ]
明らかに、減算は適切に機能しています。減算への入力は異なる順序であり、異なる出力が生成されます。ただし、グラフの視覚化は次のとおりです。
コードのようにオペランドの順序を逆にしないように見える "Sub" 演算子に注意してください。(いずれかの演算子を強調表示しても、それ以上の洞察は得られません。) 明らかな何かが欠けているのでしょうか?それとも、ノードの視覚化がオペランドの順序を完全に覆い隠していますか?