全て、
ここで説明されているように線形回帰を実行して、Flink ML 0.10.1 をテストしようとしています。
https://ci.apache.org/projects/flink/flink-docs-master/libs/ml/multiple_linear_regression.html
DenseVector の代わりに SparseVectors を使用していますが、モデルをトレーニングしようとすると次の問題が発生します。
java.lang.IllegalArgumentException: axpy only supports adding to a dense vector but got type class org.apache.flink.ml.math.SparseVector.
at org.apache.flink.ml.math.BLAS$.axpy(BLAS.scala:60)
at org.apache.flink.ml.optimization.GradientDescent$$anonfun$org$apache$flink$ml$optimization$GradientDescent$$SGDStep$2.apply(GradientDescent.scala:181)
at org.apache.flink.ml.optimization.GradientDescent$$anonfun$org$apache$flink$ml$optimization$GradientDescent$$SGDStep$2.apply(GradientDescent.scala:177)
at org.apache.flink.api.scala.DataSet$$anon$7.reduce(DataSet.scala:583)
at org.apache.flink.runtime.operators.chaining.ChainedAllReduceDriver.collect(ChainedAllReduceDriver.java:93)
at org.apache.flink.runtime.operators.MapDriver.run(MapDriver.java:97)
at org.apache.flink.runtime.operators.BatchTask.run(BatchTask.java:489)
at org.apache.flink.runtime.iterative.task.AbstractIterativeTask.run(AbstractIterativeTask.java:144)
at org.apache.flink.runtime.iterative.task.IterationIntermediateTask.run(IterationIntermediateTask.java:92)
at org.apache.flink.runtime.operators.BatchTask.invoke(BatchTask.java:354)
at org.apache.flink.runtime.taskmanager.Task.run(Task.java:584)
at java.lang.Thread.run(Thread.java:745)
FlinkML MLG は SparseVectors をサポートしていませんか?