2 つの GPS 座標間の距離を (緯度と経度を使用して) 計算するにはどうすればよいですか?
31 に答える
Javascript 実装を含む、緯度と経度によって 2 つの座標間の距離を計算します。
西と南の位置は負です。分と秒は 60 から外れているので、S31 30' は -31.50 度です。
度をラジアンに変換することを忘れないでください。多くの言語にはこの機能があります。またはその単純な計算: radians = degrees * PI / 180
.
function degreesToRadians(degrees) {
return degrees * Math.PI / 180;
}
function distanceInKmBetweenEarthCoordinates(lat1, lon1, lat2, lon2) {
var earthRadiusKm = 6371;
var dLat = degreesToRadians(lat2-lat1);
var dLon = degreesToRadians(lon2-lon1);
lat1 = degreesToRadians(lat1);
lat2 = degreesToRadians(lat2);
var a = Math.sin(dLat/2) * Math.sin(dLat/2) +
Math.sin(dLon/2) * Math.sin(dLon/2) * Math.cos(lat1) * Math.cos(lat2);
var c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a));
return earthRadiusKm * c;
}
使用例を次に示します。
distanceInKmBetweenEarthCoordinates(0,0,0,0) // Distance between same
// points should be 0
0
distanceInKmBetweenEarthCoordinates(51.5, 0, 38.8, -77.1) // From London
// to Arlington
5918.185064088764
Haversine の C# バージョン
double _eQuatorialEarthRadius = 6378.1370D;
double _d2r = (Math.PI / 180D);
private int HaversineInM(double lat1, double long1, double lat2, double long2)
{
return (int)(1000D * HaversineInKM(lat1, long1, lat2, long2));
}
private double HaversineInKM(double lat1, double long1, double lat2, double long2)
{
double dlong = (long2 - long1) * _d2r;
double dlat = (lat2 - lat1) * _d2r;
double a = Math.Pow(Math.Sin(dlat / 2D), 2D) + Math.Cos(lat1 * _d2r) * Math.Cos(lat2 * _d2r) * Math.Pow(Math.Sin(dlong / 2D), 2D);
double c = 2D * Math.Atan2(Math.Sqrt(a), Math.Sqrt(1D - a));
double d = _eQuatorialEarthRadius * c;
return d;
}
これは、この .NET フィドルです。独自の緯度/経度でテストできます。
このスレッドに対する Roman Makarov の返信に基づく Java バージョンの Haversine アルゴリズム
public class HaversineAlgorithm {
static final double _eQuatorialEarthRadius = 6378.1370D;
static final double _d2r = (Math.PI / 180D);
public static int HaversineInM(double lat1, double long1, double lat2, double long2) {
return (int) (1000D * HaversineInKM(lat1, long1, lat2, long2));
}
public static double HaversineInKM(double lat1, double long1, double lat2, double long2) {
double dlong = (long2 - long1) * _d2r;
double dlat = (lat2 - lat1) * _d2r;
double a = Math.pow(Math.sin(dlat / 2D), 2D) + Math.cos(lat1 * _d2r) * Math.cos(lat2 * _d2r)
* Math.pow(Math.sin(dlong / 2D), 2D);
double c = 2D * Math.atan2(Math.sqrt(a), Math.sqrt(1D - a));
double d = _eQuatorialEarthRadius * c;
return d;
}
}
これは、SQL Server 2008 の geography タイプで非常に簡単に実行できます。
SELECT geography::Point(lat1, lon1, 4326).STDistance(geography::Point(lat2, lon2, 4326))
-- computes distance in meters using eliptical model, accurate to the mm
4326 は WGS84 楕円体地球モデルの SRID です。
私が使用している Python の Haversine 関数は次のとおりです。
from math import pi,sqrt,sin,cos,atan2
def haversine(pos1, pos2):
lat1 = float(pos1['lat'])
long1 = float(pos1['long'])
lat2 = float(pos2['lat'])
long2 = float(pos2['long'])
degree_to_rad = float(pi / 180.0)
d_lat = (lat2 - lat1) * degree_to_rad
d_long = (long2 - long1) * degree_to_rad
a = pow(sin(d_lat / 2), 2) + cos(lat1 * degree_to_rad) * cos(lat2 * degree_to_rad) * pow(sin(d_long / 2), 2)
c = 2 * atan2(sqrt(a), sqrt(1 - a))
km = 6367 * c
mi = 3956 * c
return {"km":km, "miles":mi}
プロジェクトのポイント間の多くの距離を計算する必要があったため、先に進んでコードを最適化しようとしました。さまざまなブラウザーで平均して、私の新しい実装は、最も支持された回答よりも2 倍高速に実行されます。
function distance(lat1, lon1, lat2, lon2) {
var p = 0.017453292519943295; // Math.PI / 180
var c = Math.cos;
var a = 0.5 - c((lat2 - lat1) * p)/2 +
c(lat1 * p) * c(lat2 * p) *
(1 - c((lon2 - lon1) * p))/2;
return 12742 * Math.asin(Math.sqrt(a)); // 2 * R; R = 6371 km
}
私の jsPerf で遊んで、ここで結果を見ることができます。
最近、私はPythonで同じことをする必要があったので、ここにPythonの実装があります:
from math import cos, asin, sqrt
def distance(lat1, lon1, lat2, lon2):
p = 0.017453292519943295
a = 0.5 - cos((lat2 - lat1) * p)/2 + cos(lat1 * p) * cos(lat2 * p) * (1 - cos((lon2 - lon1) * p)) / 2
return 12742 * asin(sqrt(a))
完全を期すために、Wiki のHaversineを参照してください。
それは、どれだけ正確である必要があるかによって異なります。ピンポイントの精度が必要な場合は、mm まで正確なVincenty のアルゴリズムなど、球体ではなく楕円体を使用するアルゴリズムを検討することをお勧めします。
ここでは、C#(ラジアンではlatおよびlong)です。
double CalculateGreatCircleDistance(double lat1, double long1, double lat2, double long2, double radius)
{
return radius * Math.Acos(
Math.Sin(lat1) * Math.Sin(lat2)
+ Math.Cos(lat1) * Math.Cos(lat2) * Math.Cos(long2 - long1));
}
緯度と経度が度単位の場合は、180/PIで割ってラジアンに変換します。
中心の距離でレコードを選択するために使用する T-SQL 関数
Create Function [dbo].[DistanceInMiles]
( @fromLatitude float ,
@fromLongitude float ,
@toLatitude float,
@toLongitude float
)
returns float
AS
BEGIN
declare @distance float
select @distance = cast((3963 * ACOS(round(COS(RADIANS(90-@fromLatitude))*COS(RADIANS(90-@toLatitude))+
SIN(RADIANS(90-@fromLatitude))*SIN(RADIANS(90-@toLatitude))*COS(RADIANS(@fromLongitude-@toLongitude)),15))
)as float)
return round(@distance,1)
END
より正確なものが必要な場合は、これをご覧ください。
Vincentyの式は、測地学で使用される2つの関連する反復法であり、Thaddeus Vincenty(1975a)によって開発された、回転楕円体の表面上の2点間の距離を計算します。回転楕円体の地球を想定する大円距離などの方法よりも正確です。
最初の(直接)メソッドは、別のポイントからの特定の距離と方位角(方向)であるポイントの位置を計算します。2番目の(逆の)方法は、2つの指定されたポイント間の地理的距離と方位角を計算します。それらは、地球楕円体上で0.5 mm(0.020インチ)以内の精度であるため、測地学で広く使用されています。
これは、"Henry Vilinskiy" のバージョンで、MySQL と Kilometers に適合しています。
CREATE FUNCTION `CalculateDistanceInKm`(
fromLatitude float,
fromLongitude float,
toLatitude float,
toLongitude float
) RETURNS float
BEGIN
declare distance float;
select
6367 * ACOS(
round(
COS(RADIANS(90-fromLatitude)) *
COS(RADIANS(90-toLatitude)) +
SIN(RADIANS(90-fromLatitude)) *
SIN(RADIANS(90-toLatitude)) *
COS(RADIANS(fromLongitude-toLongitude))
,15)
)
into distance;
return round(distance,3);
END;
private double deg2rad(double deg)
{
return (deg * Math.PI / 180.0);
}
private double rad2deg(double rad)
{
return (rad / Math.PI * 180.0);
}
private double GetDistance(double lat1, double lon1, double lat2, double lon2)
{
//code for Distance in Kilo Meter
double theta = lon1 - lon2;
double dist = Math.Sin(deg2rad(lat1)) * Math.Sin(deg2rad(lat2)) + Math.Cos(deg2rad(lat1)) * Math.Cos(deg2rad(lat2)) * Math.Cos(deg2rad(theta));
dist = Math.Abs(Math.Round(rad2deg(Math.Acos(dist)) * 60 * 1.1515 * 1.609344 * 1000, 0));
return (dist);
}
private double GetDirection(double lat1, double lon1, double lat2, double lon2)
{
//code for Direction in Degrees
double dlat = deg2rad(lat1) - deg2rad(lat2);
double dlon = deg2rad(lon1) - deg2rad(lon2);
double y = Math.Sin(dlon) * Math.Cos(lat2);
double x = Math.Cos(deg2rad(lat1)) * Math.Sin(deg2rad(lat2)) - Math.Sin(deg2rad(lat1)) * Math.Cos(deg2rad(lat2)) * Math.Cos(dlon);
double direct = Math.Round(rad2deg(Math.Atan2(y, x)), 0);
if (direct < 0)
direct = direct + 360;
return (direct);
}
private double GetSpeed(double lat1, double lon1, double lat2, double lon2, DateTime CurTime, DateTime PrevTime)
{
//code for speed in Kilo Meter/Hour
TimeSpan TimeDifference = CurTime.Subtract(PrevTime);
double TimeDifferenceInSeconds = Math.Round(TimeDifference.TotalSeconds, 0);
double theta = lon1 - lon2;
double dist = Math.Sin(deg2rad(lat1)) * Math.Sin(deg2rad(lat2)) + Math.Cos(deg2rad(lat1)) * Math.Cos(deg2rad(lat2)) * Math.Cos(deg2rad(theta));
dist = rad2deg(Math.Acos(dist)) * 60 * 1.1515 * 1.609344;
double Speed = Math.Abs(Math.Round((dist / Math.Abs(TimeDifferenceInSeconds)) * 60 * 60, 0));
return (Speed);
}
private double GetDuration(DateTime CurTime, DateTime PrevTime)
{
//code for speed in Kilo Meter/Hour
TimeSpan TimeDifference = CurTime.Subtract(PrevTime);
double TimeDifferenceInSeconds = Math.Abs(Math.Round(TimeDifference.TotalSeconds, 0));
return (TimeDifferenceInSeconds);
}
この Lua コードは、ウィキペディアと Robert Lipe のGPSbabelツールで見つかったものを基にしています。
local EARTH_RAD = 6378137.0
-- earth's radius in meters (official geoid datum, not 20,000km / pi)
local radmiles = EARTH_RAD*100.0/2.54/12.0/5280.0;
-- earth's radius in miles
local multipliers = {
radians = 1, miles = radmiles, mi = radmiles, feet = radmiles * 5280,
meters = EARTH_RAD, m = EARTH_RAD, km = EARTH_RAD / 1000,
degrees = 360 / (2 * math.pi), min = 60 * 360 / (2 * math.pi)
}
function gcdist(pt1, pt2, units) -- return distance in radians or given units
--- this formula works best for points close together or antipodal
--- rounding error strikes when distance is one-quarter Earth's circumference
--- (ref: wikipedia Great-circle distance)
if not pt1.radians then pt1 = rad(pt1) end
if not pt2.radians then pt2 = rad(pt2) end
local sdlat = sin((pt1.lat - pt2.lat) / 2.0);
local sdlon = sin((pt1.lon - pt2.lon) / 2.0);
local res = sqrt(sdlat * sdlat + cos(pt1.lat) * cos(pt2.lat) * sdlon * sdlon);
res = res > 1 and 1 or res < -1 and -1 or res
res = 2 * asin(res);
if units then return res * assert(multipliers[units])
else return res
end
end
I needed to implement this in PowerShell, hope it can help someone else. Some notes about this method
- Don't split any of the lines or the calculation will be wrong
- To calculate in KM remove the * 1000 in the calculation of $distance
- Change $earthsRadius = 3963.19059 and remove * 1000 in the calculation of $distance the to calulate the distance in miles
I'm using Haversine, as other posts have pointed out Vincenty's formulae is much more accurate
Function MetresDistanceBetweenTwoGPSCoordinates($latitude1, $longitude1, $latitude2, $longitude2) { $Rad = ([math]::PI / 180); $earthsRadius = 6378.1370 # Earth's Radius in KM $dLat = ($latitude2 - $latitude1) * $Rad $dLon = ($longitude2 - $longitude1) * $Rad $latitude1 = $latitude1 * $Rad $latitude2 = $latitude2 * $Rad $a = [math]::Sin($dLat / 2) * [math]::Sin($dLat / 2) + [math]::Sin($dLon / 2) * [math]::Sin($dLon / 2) * [math]::Cos($latitude1) * [math]::Cos($latitude2) $c = 2 * [math]::ATan2([math]::Sqrt($a), [math]::Sqrt(1-$a)) $distance = [math]::Round($earthsRadius * $c * 1000, 0) #Multiple by 1000 to get metres Return $distance }
Scala バージョン
def deg2rad(deg: Double) = deg * Math.PI / 180.0
def rad2deg(rad: Double) = rad / Math.PI * 180.0
def getDistanceMeters(lat1: Double, lon1: Double, lat2: Double, lon2: Double) = {
val theta = lon1 - lon2
val dist = Math.sin(deg2rad(lat1)) * Math.sin(deg2rad(lat2)) + Math.cos(deg2rad(lat1)) *
Math.cos(deg2rad(lat2)) * Math.cos(deg2rad(theta))
Math.abs(
Math.round(
rad2deg(Math.acos(dist)) * 60 * 1.1515 * 1.609344 * 1000)
)
}
fssnipのF#でこれの実装を見つけることができます (いくつかの良い説明があります) 。
重要な部分は次のとおりです。
let GreatCircleDistance<[<Measure>] 'u> (R : float<'u>) (p1 : Location) (p2 : Location) =
let degToRad (x : float<deg>) = System.Math.PI * x / 180.0<deg/rad>
let sq x = x * x
// take the sin of the half and square the result
let sinSqHf (a : float<rad>) = (System.Math.Sin >> sq) (a / 2.0<rad>)
let cos (a : float<deg>) = System.Math.Cos (degToRad a / 1.0<rad>)
let dLat = (p2.Latitude - p1.Latitude) |> degToRad
let dLon = (p2.Longitude - p1.Longitude) |> degToRad
let a = sinSqHf dLat + cos p1.Latitude * cos p2.Latitude * sinSqHf dLon
let c = 2.0 * System.Math.Atan2(System.Math.Sqrt(a), System.Math.Sqrt(1.0-a))
R * c
地球の曲率に沿ってほしいと思います。あなたの 2 点と地球の中心は平面上にあります。地球の中心はその平面上の円の中心であり、2 つの点は (おおよそ) その円の周囲にあります。そこから、ある点から別の点までの角度を調べることで、距離を計算できます。
ポイントが同じ高さでない場合、または地球が完全な球体ではないことを考慮する必要がある場合は、もう少し難しくなります。
Unity バージョン C#
ハバーシンアルゴリズム。
public float Distance(float lat1, float lon1, float lat2, float lon2)
{
var earthRadiusKm = 6371;
var dLat = (lat2 - lat1) * Mathf.Rad2Deg;
var dLon = (lon2 - lon1) * Mathf.Rad2Deg;
var a = Mathf.Sin(dLat / 2) * Mathf.Sin(dLat / 2) +
Mathf.Sin(dLon / 2) * Mathf.Sin(dLon / 2) *
Mathf.Cos(lat1 * Mathf.Rad2Deg) * Mathf.Cos(lat2 * Mathf.Rad2Deg);
var c = 2 * Mathf.Atan2(Mathf.Sqrt(a), Mathf.Sqrt(1 - a));
return earthRadiusKm * c;
}