オイラー法とレンジ クッタ法の両方を使用してばね質量の問題を解決し、プロットを比較しようとしています。Euler と Runge-Kutta の両方の関数を作成しましたが、問題に対して関数を呼び出した後、プロットにデータが表示されないようです。プロットを修正して、コードにエラーがないかどうかを確認してください。ありがとう
#function Euler
def euler ( y, t, dt, derivative):
y_next = y + derivative(y, t) * dt
return y_next
# function Runge-Kutta
# 2nd order Runge-Kutta method routine
def Runge_Kutta (y, time, dt, derivative):
k0 = dt * derivative (y, time)
k1 = dt * derivative (y + k0, time + dt)
y_next = y + 0.5 * (k0 + k1)
return y_next
ここに私が解決しようとしている問題があります
[![""" A spring and mass system. the coefficient of friction \mu is not negligible.generate a position vs. time plot for the motion of the mass, given an initial displacement x = 0.2m , spring constant k = 42 N/m , mass m =0.25 Kg, coefficient of friction \mu = 0.15 and initial velocity v = 0
F = -kx +/-mu mg """
from pylab import *
from Runge_Kutta_routine import Runge_Kutta
from eulerODE import euler
N = 500 #input ("How many number of steps to take?")
x0 = 0.2
v0 = 0.0
tau = 3.0 #input ("What is the total time of the simulation in seconds?")
dt = tau /float ( N-1)
k = 41.0 #input (" what is the spring constant?")
m = 0.25 #input ("what is the mass of the bob?")
gravity = 9.8
mu = 0.15 #input ("what is the coefficient of friction?")
""" we create a Nx2 array for storing the results of our calculations. Each 2- element row will be used for the state of the system at one instant, and each instant is separated by time dt. the first element in each row will denote position, the second would be velocity"""
y = zeros (\[N,2\])
y \[0,0\] = x0
y \[0,1\] = v0
def SpringMass (state, time):
""" we break this second order DE into two first order DE introducing dx/ dt = v & dv/dt = kx/ m +/- mu g....
Note that the direction of the frictional force changes depending on the sign of the velocity, we handle this with an if statement."""
g0 = state\[1\]
if g0 > 0:
g1 = -k/m * state \[0\] - gravity * mu
else:
g1 = -k/m * state \[0\] + gravity * mu
return array (\[g0, g1\])
# Now we do the calculations
# loop only N-1 so that we don;t run into a problem addresssing y\[N+1\] on the last point
for j in range (N-1):
#y \[j+1\] = euler ( y\[j\] , 0, dt, SpringMass)
y \[j+1\] = Runge_Kutta ( y\[j\], 0 , dt, SpringMass)
# Now we plot the result
time = linspace ( 0 , tau, N)
plot ( time, y\[:,0\], 'b-', label ='position')
xlabel('time')
ylabel('position')
show()][1]][1]