-1

ベクトルを回転させ、結果を常に正の x、y、z 平面に保持する次のコードがあります。System.Numerics タイプの Vector3 と Matrix4x4 を使用するようにコードをリファクタリングしたいと考えています。誰かが翻訳を手伝ってくれませんか。

Public Class Form1
    Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click
        Dim rotation As Vector = New Vector(45, 0, -90)
        Dim delta As Vector = New Vector(10, 10, 10)
        Dim result As Vector = InverseVector(delta, rotation)
    End Sub

    Private Function InverseVector(ByVal _delta As Vector, ByVal _rotation As Vector) As Vector
        Dim vChange As New Vector(0, 0, 0)
        Dim matX(2, 2) As Single
        Dim matY(2, 2) As Single
        Dim matZ(2, 2) As Single
        Dim negativeFactor As Int32 = 1
        Dim dDeterminate As Single
        Dim matAdjoin(2, 2) As Single
        Dim matTranspose(2, 2) As Single
        Dim matInverse(2, 2) As Single

        If _delta.X < 0 Or _delta.Y < 0 Or _delta.Z < 0 Then
            negativeFactor = -1
        End If

        Dim dRadians As Single

        dRadians = 0.0174532D * _rotation.X

        'Load the X Matrix
        matX(0, 0) = 1
        matX(0, 1) = 0
        matX(0, 2) = 0
        matX(1, 0) = 0
        matX(1, 1) = CDec(Math.Round(Math.Cos(dRadians), 4))
        matX(1, 2) = CDec(Math.Round(Math.Sin(dRadians), 4) * -1)
        matX(2, 0) = 0
        matX(2, 1) = CDec(Math.Round(Math.Sin(dRadians), 4))
        matX(2, 2) = CDec(Math.Round(Math.Cos(dRadians), 4))

        'Load up the Y Matrix
        dRadians = 0.0174532D * _rotation.Y
        matY(0, 0) = CDec(Math.Round(Math.Cos(dRadians), 4))
        matY(0, 1) = 0
        matY(0, 2) = CDec(Math.Round(Math.Sin(dRadians), 4))
        matY(1, 0) = 0
        matY(1, 1) = 1
        matY(1, 2) = 0
        matY(2, 0) = CDec(Math.Round(Math.Sin(dRadians), 4) * -1)
        matY(2, 1) = 0
        matY(2, 2) = CDec(Math.Round(Math.Cos(dRadians), 4))

        'Load up the Z Matrix
        dRadians = 0.0174532D * _rotation.Z
        matZ(0, 0) = CDec(Math.Round(Math.Cos(dRadians), 4))
        matZ(0, 1) = CDec(Math.Round(Math.Sin(dRadians), 4) * -1)
        matZ(0, 2) = 0
        matZ(1, 0) = CDec(Math.Round(Math.Sin(dRadians), 4))
        matZ(1, 1) = CDec(Math.Round(Math.Cos(dRadians), 4))
        matZ(1, 2) = 0
        matZ(2, 0) = 0
        matZ(2, 1) = 0
        matZ(2, 2) = 1

        'multiply the two matrices
        Dim resultMatrix1(2, 2) As Single
        For i As Integer = 0 To 2
            For j As Integer = 0 To 2
                resultMatrix1(i, j) = matX(i, 0) * matY(0, j) +
                                       matX(i, 1) * matY(1, j) +
                                       matX(i, 2) * matY(2, j)
            Next
        Next

        'Now mutiply ResultMatrix with X matrix
        Dim resultMatrix2(2, 2) As Single
        For i As Integer = 0 To 2
            For j As Integer = 0 To 2
                resultMatrix2(i, j) = matZ(i, 0) * resultMatrix1(0, j) +
                                       matZ(i, 1) * resultMatrix1(1, j) +
                                       matZ(i, 2) * resultMatrix1(2, j)
            Next
        Next

        'Get determinate
        dDeterminate = (resultMatrix2(0, 0) * resultMatrix2(1, 1) * resultMatrix2(2, 2)) +
                       (resultMatrix2(0, 1) * resultMatrix2(1, 2) * resultMatrix2(2, 0)) +
                       (resultMatrix2(0, 2) * resultMatrix2(2, 1) * resultMatrix2(1, 0)) -
                       (resultMatrix2(0, 2) * resultMatrix2(1, 1) * resultMatrix2(2, 0)) -
                       (resultMatrix2(0, 1) * resultMatrix2(1, 0) * resultMatrix2(2, 2)) -
                       (resultMatrix2(0, 0) * resultMatrix2(1, 2) * resultMatrix2(2, 1))

        matAdjoin(0, 0) =
            ((resultMatrix2(1, 1) * resultMatrix2(2, 2)) - (resultMatrix2(1, 2) * resultMatrix2(2, 1))) * 1
        matAdjoin(0, 1) =
            ((resultMatrix2(1, 0) * resultMatrix2(2, 2)) - (resultMatrix2(1, 2) * resultMatrix2(2, 0))) * -1
        matAdjoin(0, 2) =
            ((resultMatrix2(1, 0) * resultMatrix2(2, 1)) - (resultMatrix2(1, 1) * resultMatrix2(2, 0))) * 1
        matAdjoin(1, 0) =
            ((resultMatrix2(0, 1) * resultMatrix2(2, 2)) - (resultMatrix2(0, 2) * resultMatrix2(2, 1))) * -1
        matAdjoin(1, 1) =
            ((resultMatrix2(0, 0) * resultMatrix2(2, 2)) - (resultMatrix2(0, 2) * resultMatrix2(2, 0))) * 1
        matAdjoin(1, 2) =
            ((resultMatrix2(0, 0) * resultMatrix2(2, 1)) - (resultMatrix2(0, 1) * resultMatrix2(2, 0))) * -1
        matAdjoin(2, 0) =
            ((resultMatrix2(0, 1) * resultMatrix2(1, 2)) - (resultMatrix2(0, 2) * resultMatrix2(1, 1))) * 1
        matAdjoin(2, 1) =
            ((resultMatrix2(0, 0) * resultMatrix2(1, 2)) - (resultMatrix2(0, 2) * resultMatrix2(1, 0))) * -1
        matAdjoin(2, 2) =
            ((resultMatrix2(0, 0) * resultMatrix2(1, 1)) - (resultMatrix2(0, 1) * resultMatrix2(1, 0))) * 1

        matTranspose(0, 0) = matAdjoin(0, 0)
        matTranspose(0, 1) = matAdjoin(1, 0)
        matTranspose(0, 2) = matAdjoin(2, 0)
        matTranspose(1, 0) = matAdjoin(0, 1)
        matTranspose(1, 1) = matAdjoin(1, 1)
        matTranspose(1, 2) = matAdjoin(2, 1)
        matTranspose(2, 0) = matAdjoin(0, 2)
        matTranspose(2, 1) = matAdjoin(1, 2)
        matTranspose(2, 2) = matAdjoin(2, 2)

        matInverse(0, 0) = matTranspose(0, 0) / dDeterminate
        matInverse(0, 1) = matTranspose(0, 1) / dDeterminate
        matInverse(0, 2) = matTranspose(0, 2) / dDeterminate
        matInverse(1, 0) = matTranspose(1, 0) / dDeterminate
        matInverse(1, 1) = matTranspose(1, 1) / dDeterminate
        matInverse(1, 2) = matTranspose(1, 2) / dDeterminate
        matInverse(2, 0) = matTranspose(2, 0) / dDeterminate
        matInverse(2, 1) = matTranspose(2, 1) / dDeterminate
        matInverse(2, 2) = matTranspose(2, 2) / dDeterminate

        vChange.X =
            (Math.Abs(_delta.X * matInverse(0, 0)) +
             Math.Abs(_delta.Y * matInverse(0, 1)) +
             Math.Abs(_delta.Z * matInverse(0, 2))) * negativeFactor
        vChange.Y =
            (Math.Abs(_delta.X * matInverse(1, 0)) +
             Math.Abs(_delta.Y * matInverse(1, 1)) +
             Math.Abs(_delta.Z * matInverse(1, 2))) * negativeFactor
        vChange.Z =
            (Math.Abs(_delta.X * matInverse(2, 0)) +
             Math.Abs(_delta.Y * matInverse(2, 1)) +
             Math.Abs(_delta.Z * matInverse(2, 2))) * negativeFactor

        Return vChange
    End Function
End Class

Public Class Vector
    Public Property X() As Single
    Public Property Y() As Single
    Public Property Z() As Single
    Public Sub New(ByVal _x As Single, ByVal _y As Single, ByVal _z As Single)
        X = _x
        Y = _y
        Z = _z
    End Sub
End Class

これまでのところ、これをリファクタリングすることができましたが、matAdjoin にこだわっています

Private Function InverseVector(ByVal _delta As Vector3, ByVal _rotation As Vector3) As Vector3
    Dim vChange As New Vector3(0, 0, 0)
    Dim matX As Matrix4x4 = Matrix4x4.Identity
    Dim matY As Matrix4x4 = Matrix4x4.Identity
    Dim matZ As Matrix4x4 = Matrix4x4.Identity
    Dim negativeFactor As Int32 = 1
    Dim determinate As Single
    Dim matAdjoin As Matrix4x4
    Dim matTranspose As Matrix4x4
    Dim matInverse As Matrix4x4
    If _delta.X < 0 Or _delta.Y < 0 Or _delta.Z < 0 Then
        negativeFactor = -1
    End If
    'Load the X Matrix
    Dim sRadians As Single = 0.0174532D * _rotation.X
    matX = Matrix4x4.CreateRotationX(sRadians)
    matX.M23 *= -1
    matX.M32 *= -1
    'Load up the Y Matrix
    sRadians = 0.0174532D * _rotation.Y
    matY = Matrix4x4.CreateRotationY(sRadians)
    'Load up the Z Matrix
    sRadians = 0.0174532D * _rotation.Z
    matZ = Matrix4x4.CreateRotationZ(sRadians)
    matZ.M12 *= -1
    matZ.M21 *= -1
    'multiply the two matrices
    Dim resultMatrix1 As Matrix4x4 = Matrix4x4.Multiply(matX, matY)
    'Now mutiply ResultMatrix with X matrix
    Dim resultMatrix2 As Matrix4x4 = Matrix4x4.Multiply(matZ, resultMatrix1)
    'Get determinate
    determinate = resultMatrix2.GetDeterminant
    'stuck on from here on
    Return vChange
End Function
4

2 に答える 2