500 万を超える要素を繰り返し実行する Spark アプリケーションがあります。アプリケーションをデータセット全体で実行するには 2 時間かかります。しかし、5,000 万を超える要素のデータセット全体に対してアプリケーションを実行する必要があります。
コードは正常に実行されますが、問題は、私のプログラムのほとんどがドライバーで実行され、エグゼキューターがアプリケーションの実行において果たす役割は最小限です。したがって、この反復アプリケーションの計算時間は非常に長くなります。
アプリケーションは、n-triples データセットからグラフを作成して、連結要素を見つけます。
問題は、executor がタスクを受信しておらず、最初の for ループが 500 万個の要素すべてが完了するまで実行されるため、この部分に約 90% の時間がかかるため、主にこの部分を最適化する必要があることです。
作業をドライバーからエグゼキューターに転送する変更を提案し、それによってこのコードをスケーラブルにして、計算時間を大幅に短縮します。
import scala.io.Source
import org.apache.spark.SparkContext
import org.apache.spark.SparkConf
import org.apache.spark.SparkContext._
import org.apache.spark.graphx._
import org.apache.spark.rdd.RDD
import scala.collection.mutable.ListBuffer
import scala.collection.mutable.HashMap
import scala.collection.mutable.ArrayBuffer
object Wisdom {
val componentLists = HashMap[VertexId, ListBuffer[VertexId]]()
val prefLabelMap = HashMap[VertexId, String]()
def main(args: Array[String]) {
val conf = new SparkConf()
val sc = new SparkContext(conf)
val tripleEndingPattern = """\s*\.\s*$""".r
val languageTagPattern = "@[\\w-]+".r
var edgeArray = Array(Edge(0L,0L,"http://dummy/URI"))
var literalPropsTriplesArray = new Array[(Long,Long,String)](0)
var vertexArray = new Array[(Long,String)](0)
val source = sc.textFile("hdfs://ec2-54-172-85-190.compute-1.amazonaws.com:54310/akshat/datas.nt")
val lines = source.toArray
var vertexURIMap = new HashMap[String, Long];
var triple = new Array[String](3)
var nextVertexNum = 0L
for (i <- 0 until lines.length) {
lines(i) = tripleEndingPattern.replaceFirstIn(lines(i)," ")
triple = lines(i).mkString.split(">\\s+")
val tripleSubject = triple(0).substring(1)
val triplePredicate = triple(1).substring(1)
if (!(vertexURIMap.contains(tripleSubject))) {
vertexURIMap(tripleSubject) = nextVertexNum
nextVertexNum += 1
}
if (!(vertexURIMap.contains(triplePredicate))) {
vertexURIMap(triplePredicate) = nextVertexNum
nextVertexNum += 1
}
val subjectVertexNumber = vertexURIMap(tripleSubject)
val predicateVertexNumber = vertexURIMap(triplePredicate)
if (triple(2)(0) == '<') {
val tripleObject = triple(2).substring(1)
if (!(vertexURIMap.contains(tripleObject))) {
vertexURIMap(tripleObject) = nextVertexNum
nextVertexNum += 1
}
val objectVertexNumber = vertexURIMap(tripleObject)
edgeArray = edgeArray :+
Edge(subjectVertexNumber,objectVertexNumber,triplePredicate)
}
else {
literalPropsTriplesArray = literalPropsTriplesArray :+
(subjectVertexNumber,predicateVertexNumber,triple(2))
}
}
for ((k, v) <- vertexURIMap) vertexArray = vertexArray :+ (v, k)
for (i <- 0 until literalPropsTriplesArray.length) {
if (literalPropsTriplesArray(i)._2 ==
vertexURIMap("http://www.w3.org/2000/01/rdf-schema#label")) {
val prefLabel =
languageTagPattern.replaceFirstIn(literalPropsTriplesArray(i)._3,"")
prefLabelMap(literalPropsTriplesArray(i)._1) = prefLabel;
}
}
val vertexRDD: RDD[(Long, String)] = sc.parallelize(vertexArray)
val edgeRDD: RDD[Edge[(String)]] =
sc.parallelize(edgeArray.slice(1,edgeArray.length))
val literalPropsTriplesRDD: RDD[(Long,Long,String)] =
sc.parallelize(literalPropsTriplesArray)
val graph: Graph[String, String] = Graph(vertexRDD, edgeRDD)
val skosRelatedSubgraph =
graph.subgraph(t => t.attr ==
"http://purl.org/dc/terms/subject")
val ccGraph = skosRelatedSubgraph.connectedComponents()
ccGraph.vertices.saveAsTextFile("hdfs://ec2-54-172-85-190.compute-1.amazonaws.com/akshat/outp")
sc.stop
}
}