2

@Kametrixom の回答に基づいて、配列内の合計を並列計算するためのテスト アプリケーションをいくつか作成しました。

私のテストアプリケーションは次のようになります。

import UIKit
import Metal

class ViewController: UIViewController {

// Data type, has to be the same as in the shader
typealias DataType = CInt

override func viewDidLoad() {
    super.viewDidLoad()

    let data = (0..<10000000).map{ _ in DataType(200) } // Our data, randomly generated


    var start, end : UInt64


    var result:DataType = 0
    start = mach_absolute_time()
    data.withUnsafeBufferPointer { buffer in
        for elem in buffer {
            result += elem
        }
    }
    end = mach_absolute_time()

    print("CPU result: \(result), time: \(Double(end - start) / Double(NSEC_PER_SEC))")

    result = 0


    start = mach_absolute_time()
    result = sumParallel4(data)
    end = mach_absolute_time()

    print("Metal result: \(result), time: \(Double(end - start) / Double(NSEC_PER_SEC))")


    result = 0

    start = mach_absolute_time()
    result = sumParralel(data)
    end = mach_absolute_time()

    print("Metal result: \(result), time: \(Double(end - start) / Double(NSEC_PER_SEC))")

    result = 0

    start = mach_absolute_time()
    result = sumParallel3(data)
    end = mach_absolute_time()

    print("Metal result: \(result), time: \(Double(end - start) / Double(NSEC_PER_SEC))")





}

func sumParralel(data : Array<DataType>) -> DataType {

    let count = data.count
    let elementsPerSum: Int = Int(sqrt(Double(count)))

    let device = MTLCreateSystemDefaultDevice()!
    let parsum = device.newDefaultLibrary()!.newFunctionWithName("parsum")!
    let pipeline = try! device.newComputePipelineStateWithFunction(parsum)


    var dataCount = CUnsignedInt(count)
    var elementsPerSumC = CUnsignedInt(elementsPerSum)
    let resultsCount = (count + elementsPerSum - 1) / elementsPerSum // Number of individual results = count / elementsPerSum (rounded up)


    let dataBuffer = device.newBufferWithBytes(data, length: strideof(DataType) * count, options: []) // Our data in a buffer (copied)
    let resultsBuffer = device.newBufferWithLength(strideof(DataType) * resultsCount, options: []) // A buffer for individual results (zero initialized)
    let results = UnsafeBufferPointer<DataType>(start: UnsafePointer(resultsBuffer.contents()), count: resultsCount) // Our results in convenient form to compute the actual result later

    let queue = device.newCommandQueue()
    let cmds = queue.commandBuffer()
    let encoder = cmds.computeCommandEncoder()

    encoder.setComputePipelineState(pipeline)

    encoder.setBuffer(dataBuffer, offset: 0, atIndex: 0)
    encoder.setBytes(&dataCount, length: sizeofValue(dataCount), atIndex: 1)
    encoder.setBuffer(resultsBuffer, offset: 0, atIndex: 2)
    encoder.setBytes(&elementsPerSumC, length: sizeofValue(elementsPerSumC), atIndex: 3)

    // We have to calculate the sum `resultCount` times => amount of threadgroups is `resultsCount` / `threadExecutionWidth` (rounded up) because each threadgroup will process `threadExecutionWidth` threads
    let threadgroupsPerGrid = MTLSize(width: (resultsCount + pipeline.threadExecutionWidth - 1) / pipeline.threadExecutionWidth, height: 1, depth: 1)

    // Here we set that each threadgroup should process `threadExecutionWidth` threads, the only important thing for performance is that this number is a multiple of `threadExecutionWidth` (here 1 times)
    let threadsPerThreadgroup = MTLSize(width: pipeline.threadExecutionWidth, height: 1, depth: 1)

    encoder.dispatchThreadgroups(threadgroupsPerGrid, threadsPerThreadgroup: threadsPerThreadgroup)
    encoder.endEncoding()


    var result : DataType = 0


    cmds.commit()
    cmds.waitUntilCompleted()
    for elem in results {
        result += elem
    }


    return result
}



func sumParralel1(data : Array<DataType>) -> UnsafeBufferPointer<DataType> {

    let count = data.count
    let elementsPerSum: Int = Int(sqrt(Double(count)))

    let device = MTLCreateSystemDefaultDevice()!
    let parsum = device.newDefaultLibrary()!.newFunctionWithName("parsum")!
    let pipeline = try! device.newComputePipelineStateWithFunction(parsum)


    var dataCount = CUnsignedInt(count)
    var elementsPerSumC = CUnsignedInt(elementsPerSum)
    let resultsCount = (count + elementsPerSum - 1) / elementsPerSum // Number of individual results = count / elementsPerSum (rounded up)

    let dataBuffer = device.newBufferWithBytes(data, length: strideof(DataType) * count, options: []) // Our data in a buffer (copied)
    let resultsBuffer = device.newBufferWithLength(strideof(DataType) * resultsCount, options: []) // A buffer for individual results (zero initialized)
    let results = UnsafeBufferPointer<DataType>(start: UnsafePointer(resultsBuffer.contents()), count: resultsCount) // Our results in convenient form to compute the actual result later

    let queue = device.newCommandQueue()
    let cmds = queue.commandBuffer()
    let encoder = cmds.computeCommandEncoder()

    encoder.setComputePipelineState(pipeline)

    encoder.setBuffer(dataBuffer, offset: 0, atIndex: 0)
    encoder.setBytes(&dataCount, length: sizeofValue(dataCount), atIndex: 1)
    encoder.setBuffer(resultsBuffer, offset: 0, atIndex: 2)
    encoder.setBytes(&elementsPerSumC, length: sizeofValue(elementsPerSumC), atIndex: 3)

    // We have to calculate the sum `resultCount` times => amount of threadgroups is `resultsCount` / `threadExecutionWidth` (rounded up) because each threadgroup will process `threadExecutionWidth` threads
    let threadgroupsPerGrid = MTLSize(width: (resultsCount + pipeline.threadExecutionWidth - 1) / pipeline.threadExecutionWidth, height: 1, depth: 1)

    // Here we set that each threadgroup should process `threadExecutionWidth` threads, the only important thing for performance is that this number is a multiple of `threadExecutionWidth` (here 1 times)
    let threadsPerThreadgroup = MTLSize(width: pipeline.threadExecutionWidth, height: 1, depth: 1)

    encoder.dispatchThreadgroups(threadgroupsPerGrid, threadsPerThreadgroup: threadsPerThreadgroup)
    encoder.endEncoding()


    cmds.commit()
    cmds.waitUntilCompleted()



    return results
}

func sumParallel3(data : Array<DataType>) -> DataType {

    var results = sumParralel1(data)

    repeat {
        results = sumParralel1(Array(results))
    } while results.count >= 100

    var result : DataType = 0

    for elem in results {
        result += elem
    }


    return result
}

func sumParallel4(data : Array<DataType>) -> DataType {

    let queue = NSOperationQueue()
    queue.maxConcurrentOperationCount = 4

    var a0 : DataType = 0
    var a1 : DataType = 0
    var a2 : DataType = 0
    var a3 : DataType = 0

    let op0 = NSBlockOperation( block : {

        for i in 0..<(data.count/4) {
            a0 = a0 + data[i]
        }

    })

    let op1 = NSBlockOperation( block : {
        for i in (data.count/4)..<(data.count/2) {
            a1 = a1 + data[i]
        }
    })

    let op2 = NSBlockOperation( block : {
        for i in (data.count/2)..<(3 * data.count/4) {
            a2 = a2 + data[i]
        }
    })

    let op3 = NSBlockOperation( block : {
        for i in (3 * data.count/4)..<(data.count) {
            a3 = a3 + data[i]
        }
    })



    queue.addOperation(op0)
    queue.addOperation(op1)
    queue.addOperation(op2)
    queue.addOperation(op3)

    queue.suspended = false
    queue.waitUntilAllOperationsAreFinished()

    let aaa: DataType = a0 + a1 + a2 + a3

    return aaa
 }
}

そして、私は次のようなシェーダーを持っています:

kernel void parsum(const device DataType* data [[ buffer(0) ]],
               const device uint& dataLength [[ buffer(1) ]],
               device DataType* sums [[ buffer(2) ]],
               const device uint& elementsPerSum [[ buffer(3) ]],

               const uint tgPos [[ threadgroup_position_in_grid ]],
               const uint tPerTg [[ threads_per_threadgroup ]],
               const uint tPos [[ thread_position_in_threadgroup ]]) {

    uint resultIndex = tgPos * tPerTg + tPos; // This is the index of the individual result, this var is unique to this thread
    uint dataIndex = resultIndex * elementsPerSum; // Where the summation should begin
    uint endIndex = dataIndex + elementsPerSum < dataLength ? dataIndex + elementsPerSum : dataLength; // The index where summation should end

    for (; dataIndex < endIndex; dataIndex++)
        sums[resultIndex] += data[dataIndex];
}

驚いたことに、関数sumParallel4は最速であり、そうあるべきではないと思っていました。sumParralel関数とを呼び出すとsumParallel3、関数の順序を変更しても、最初の関数は常に遅くなることに気付き ました。(したがって、最初に sumParralel を呼び出すと遅くなり、sumParallel3 を呼び出すと遅くなります。)

どうしてこれなの?sumParallel3 が sumParallel よりも速くないのはなぜですか? CPU で計算されているのに、なぜ sumParallel4 が最速なのですか?


GPU 関数を で更新するにはどうすればよいposix_memalignですか? GPUとCPUの間でメモリを共有するため、高速に動作する必要があることはわかっていますが、ウィッチ配列をこの方法(データまたは結果)に割り当てる必要があること、およびデータが関数で渡されるパラメーターである場合、posix_memalignでデータを割り当てる方法がわからない?

4

1 に答える 1

7

これらのテストを iPhone 6 で実行したところ、Metal バージョンは単純な CPU 合計よりも 3 倍遅く、2 倍速く実行されることがわかりました。以下で説明する変更により、一貫して高速になりました。

Metal バージョンを実行する際の多くのコストは、バッファの割り当てだけでなく、デバイスとコンピューティング パイプラインの状態を初めて作成することにも起因することがわかりました。これらは通常、アプリケーションの初期化時に 1 回実行するアクションであるため、それらをタイミングに含めるのは完全に公平ではありません。

また、Metal 検証レイヤーと GPU フレーム キャプチャを有効にして Xcode を介してこれらのテストを実行している場合、実行時間のコストが大きくなり、結果が CPU に有利になることにも注意してください。

posix_memalignこれらの注意事項を踏まえて、をバックアップするために使用できるメモリを割り当てるために使用する方法を次に示しますMTLBuffer。秘訣は、要求するメモリが実際にページ境界で整列されている (つまり、そのアドレスが の倍数であるgetpagesize()) ことを確認することです。これには、実際にデータを格納するために必要なメモリ量を超えるメモリ量の切り上げが必要になる場合があります。

let dataCount = 1_000_000
let dataSize = dataCount * strideof(DataType)
let pageSize = Int(getpagesize())
let pageCount = (dataSize + (pageSize - 1)) / pageSize
var dataPointer: UnsafeMutablePointer<Void> = nil
posix_memalign(&dataPointer, pageSize, pageCount * pageSize)
let data = UnsafeMutableBufferPointer(start: UnsafeMutablePointer<DataType>(dataPointer),
                                      count: (pageCount * pageSize) / strideof(DataType))

for i in 0..<dataCount {
    data[i] = 200
}

Swiftは独自のバッキング ストアを割り当てるため、これにはではなくを作成dataする必要があります。また、操作するデータ項目の数も渡す必要があります。これは、変更可能なバッファー ポインターの が切り上げられて、バッファーがページ アラインされるためです。UnsafeMutableBufferPointer<DataType>[DataType]Arraycount

実際にMTLBufferこのデータで裏打ちを作成するには、newBufferWithBytesNoCopy(_:length:options:deallocator:)API を使用します。ここでも、指定する長さがページ サイズの倍数であることが重要です。それ以外の場合、このメソッドは次を返しますnil:

let roundedUpDataSize = strideof(DataType) * data.count
let dataBuffer = device.newBufferWithBytesNoCopy(data.baseAddress, length: roundedUpDataSize, options: [], deallocator: nil)

ここでは、deallocator を提供していませんが、使い終わったらbaseAddress、バッファ ポインタの を に渡して、メモリを解放する必要がありますfree()

于 2016-07-06T21:36:50.427 に答える