0

Pandas の qcut を使用して、機械学習アルゴリズム用にデータを適切に準備しています。価格のある製品があり、次のコードでデータを同じサイズのバケットに離散化しました:

df['PriceBucket'] = pd.qcut(df['sell_prix'].sort_values(), 10, labels=False)

そして、このコードは私のラベルに関する詳細を持っています:

df['PriceBucketTitle'] = pd.qcut(df['sell_prix'].sort_values(), 10)

以下に示すように、PriceBucket と PriceBucketTitle があり、完璧です! 今、考慮される要素の数が必要です。このコードは NaN 値を返します (以下を参照)。

df['products_by_number'] = pd.qcut(df['sell_prix'], 10, labels=False).value_counts()

PriceBucket で grouby を実行すれば実現可能かもしれませんが、データ形式を維持したいと考えています。これは結果です:

      sell_prix PriceBucket PriceBucketTitle    products_by_number
4668    8.0          2         (6.5, 8.5]            NaN
4669    8.0          2         (6.5, 8.5]            NaN
4670    8.0          2         (6.5, 8.5]            NaN
4671    8.0          2         (6.5, 8.5]            NaN
4672    8.0          2         (6.5, 8.5]            NaN
4673    8.0          2         (6.5, 8.5]            NaN
4674    8.0          2         (6.5, 8.5]            NaN
4675    8.0          2         (6.5, 8.5]            NaN
4676    8.0          2         (6.5, 8.5]            NaN
4677    8.0          2         (6.5, 8.5]            NaN
11902   15.0         5         (12.9, 15]            NaN
11903   15.0         5         (12.9, 15]            NaN
11904   15.0         5         (12.9, 15]            NaN
11905   15.0         5         (12.9, 15]            NaN
11906   15.0         5         (12.9, 15]            NaN
11907   15.0         5         (12.9, 15]            NaN
11908   15.0         5         (12.9, 15]            NaN
11909   15.0         5         (12.9, 15]            NaN
11910   15.0         5         (12.9, 15]            NaN
11911   15.0         5         (12.9, 15]            NaN
12065   11.0         4         (10, 12.9]            NaN
12066   11.0         4         (10, 12.9]            NaN

たとえば、これは私が欲しいものです:

      sell_prix PriceBucket PriceBucketTitle    products_by_number
4668    8.0          2         (6.5, 8.5]            984546.0
4669    8.0          2         (6.5, 8.5]            984546.0
4670    8.0          2         (6.5, 8.5]            984546.0
4671    8.0          2         (6.5, 8.5]            984546.0
4672    8.0          2         (6.5, 8.5]            984546.0
4673    8.0          2         (6.5, 8.5]            984546.0
4674    8.0          2         (6.5, 8.5]            984546.0
4675    8.0          2         (6.5, 8.5]            984546.0
4676    8.0          2         (6.5, 8.5]            984546.0
4677    8.0          2         (6.5, 8.5]            984546.0
11902   15.0         5         (12.9, 15]            1028141.0
11903   15.0         5         (12.9, 15]            1028141.0
11904   15.0         5         (12.9, 15]            1028141.0
11905   15.0         5         (12.9, 15]            1028141.0
11906   15.0         5         (12.9, 15]            1028141.0
11907   15.0         5         (12.9, 15]            1028141.0
11908   15.0         5         (12.9, 15]            1028141.0
11909   15.0         5         (12.9, 15]            1028141.0
11910   15.0         5         (12.9, 15]            1028141.0
11911   15.0         5         (12.9, 15]            1028141.0
12065   11.0         4         (10, 12.9]            48998.0
12066   11.0         4         (10, 12.9]            48998.0

ヘルプ ?ありがとう!

4

0 に答える 0