3

したがって、「df」と呼ばれるパンダのデータフレームがあり、秒を削除して、インデックスを YYYY-MM-DD HH:MM 形式にしたいだけです。また、分もグループ化され、その分の平均が表示されます。

だから私はこのデータフレームを変えたい

                        value
2015-05-03 00:00:00     61.0
2015-05-03 00:00:10     60.0
2015-05-03 00:00:25     60.0
2015-05-03 00:00:30     61.0
2015-05-03 00:00:45     61.0
2015-05-03 00:01:00     61.0
2015-05-03 00:01:10     60.0
2015-05-03 00:01:25     60.0
2015-05-03 00:01:30     61.0
2015-05-03 00:01:45     61.0
2015-05-03 00:02:00     61.0
2015-05-03 00:02:10     60.0
2015-05-03 00:02:25     60.0
2015-05-03 00:02:40     60.0
2015-05-03 00:02:55     60.0
2015-05-03 00:03:00     59.0
2015-05-03 00:03:15     59.0
2015-05-03 00:03:20     59.0
2015-05-03 00:03:35     59.0
2015-05-03 00:03:40     60.0

このデータフレームに

                        value
2015-05-03 00:00        60.6
2015-05-03 00:01        60.6
2015-05-03 00:02        60.2
2015-05-03 00:03        59.2

次のようなコードを試しました

df['value'].resample('1Min').mean()

また

df.index.resample('1Min').mean()

しかし、これはうまくいかないようです。何か案は?

4

1 に答える 1

7

最初にインデックスを次のように変換する必要がありますDatetimeIndex:

df.index = pd.DatetimeIndex(df.index)
#another solution
#df.index = pd.to_datetime(df.index)

print (df['value'].resample('1Min').mean())
#another same solution
#print (df.resample('1Min')['value'].mean())
2015-05-03 00:00:00    60.6
2015-05-03 00:01:00    60.6
2015-05-03 00:02:00    60.2
2015-05-03 00:03:00    59.2
Freq: T, Name: value, dtype: float64

index の秒の値を by に設定する別の0ソリューションastype:

print (df.groupby([df.index.values.astype('<M8[m]')])['value'].mean())
2015-05-03 00:00:00    60.6
2015-05-03 00:01:00    60.6
2015-05-03 00:02:00    60.2
2015-05-03 00:03:00    59.2
Name: value, dtype: float64
于 2016-10-10T07:05:21.850 に答える