5

tidyverse の list-columns データ構造を使用して、データ フレームの行によって異なるさまざまなモデル式を適合させる最良の方法は何ですか?

In R for Data Science で、Hadley は list-columns データ構造を使用して多くのモデルを簡単に適合させる方法の素晴らしい例を示しています ( http://r4ds.had.co.nz/many-models.html#gapminder )。式がわずかに異なる多くのモデルを適合させる方法を見つけようとしています。彼の元の例から改作された以下の例では、各大陸に異なるモデルを適合させる最良の方法は何ですか?

library(gapminder)
library(dplyr)
library(tidyr)
library(purrr)
library(broom)

by_continent <- gapminder %>% 
  group_by(continent) %>% 
  nest()

by_continent <- by_continent %>% 
  mutate(model = map(data, ~lm(lifeExp ~ year, data = .)))

by_continent %>% 
  mutate(glance=map(model, glance)) %>% 
  unnest(glance, .drop=T)

## A tibble: 5 × 12
#  continent r.squared adj.r.squared     sigma statistic      p.value    df
#     <fctr>     <dbl>         <dbl>     <dbl>     <dbl>        <dbl> <int>
#1      Asia 0.4356350     0.4342026 8.9244419  304.1298 6.922751e-51     2
#2    Europe 0.4984659     0.4970649 3.8530964  355.8099 1.344184e-55     2
#3    Africa 0.2987543     0.2976269 7.6685811  264.9929 6.780085e-50     2
#4  Americas 0.4626467     0.4608435 6.8618439  256.5699 4.354220e-42     2
#5   Oceania 0.9540678     0.9519800 0.8317499  456.9671 3.299327e-16     2
## ... with 5 more variables: logLik <dbl>, AIC <dbl>, BIC <dbl>,
##   deviance <dbl>, df.residual <int>

by_continent を反復処理することでそれを実行できることはわかっています (すべての大陸の各モデルを推定するため、効率的ではありません:

formulae <- list(
  Asia=~lm(lifeExp ~ year, data = .),
  Europe=~lm(lifeExp ~ year + pop, data = .),
  Africa=~lm(lifeExp ~ year + gdpPercap, data = .),
  Americas=~lm(lifeExp ~ year - 1, data = .),
  Oceania=~lm(lifeExp ~ year + pop + gdpPercap, data = .)
)

for (i in 1:nrow(by_continent)) {
  by_continent$model[[i]] <- map(by_continent$data, formulae[[i]])[[i]]
}

by_continent %>% 
  mutate(glance=map(model, glance)) %>% 
  unnest(glance, .drop=T)

## A tibble: 5 × 12
#  continent r.squared adj.r.squared     sigma  statistic       p.value    df
#     <fctr>     <dbl>         <dbl>     <dbl>      <dbl>         <dbl> <int>
#1      Asia 0.4356350     0.4342026 8.9244419   304.1298  6.922751e-51     2
#2    Europe 0.4984677     0.4956580 3.8584819   177.4093  3.186760e-54     3
#3    Africa 0.4160797     0.4141991 7.0033542   221.2506  2.836552e-73     3
#4  Americas 0.9812082     0.9811453 8.9703814 15612.1901 4.227928e-260     1
#5   Oceania 0.9733268     0.9693258 0.6647653   243.2719  6.662577e-16     4
## ... with 5 more variables: logLik <dbl>, AIC <dbl>, BIC <dbl>,
##   deviance <dbl>, df.residual <int>

しかし、ベースRのループに戻らずにこれを行うことは可能ですか(そして、必要のないモデルのフィッティングを回避します)?

私が試したのは次のようなものです:

by_continent <- by_continent %>% 
left_join(tibble::enframe(formulae, name="continent", value="formula"))

by_continent %>% 
   mutate(model=map2(data, formula, est_model))

しかし、機能する est_model 関数を思い付くことができないようです。機能しないこの関数 (h/t: https://gist.github.com/multidis/8138757 ) を試しました:

  est_model <- function(data, formula, ...) {
  mc <- match.call()
  m <- match(c("formula","data"), names(mc), 0L)
  mf <- mc[c(1L, m)]
  mf[[1L]] <- as.name("model.frame")
  mf <- eval(mf, parent.frame())
  data.st <- data.frame(mf)

  return(data.st)
}

(確かに、これは不自然な例です。私の実際のケースは、データの主要な独立変数が欠落している観測がかなりあるということです。そのため、1 つのモデルを完全な観測のすべての変数に適合させ、別のモデルを完全な観測の変数のサブセットのみに適合させたいと考えています。残りの観察。)

アップデート

動作する est_model 関数を思いつきました (ただし、おそらく効率的ではありません)。

est_model <- function(data, formula, ...) {
  map(list(data), formula, ...)[[1]]
}

by_continent <- by_continent %>% 
   mutate(model=map2(data, formula, est_model))

by_continent %>% 
  mutate(glance=map(model, glance)) %>% 
  unnest(glance, .drop=T)

## A tibble: 5 × 12
#  continent r.squared adj.r.squared     sigma  statistic       p.value    df
#      <chr>     <dbl>         <dbl>     <dbl>      <dbl>         <dbl> <int>
#1      Asia 0.4356350     0.4342026 8.9244419   304.1298  6.922751e-51     2
#2    Europe 0.4984677     0.4956580 3.8584819   177.4093  3.186760e-54     3
#3    Africa 0.4160797     0.4141991 7.0033542   221.2506  2.836552e-73     3
#4  Americas 0.9812082     0.9811453 8.9703814 15612.1901 4.227928e-260     1
#5   Oceania 0.9733268     0.9693258 0.6647653   243.2719  6.662577e-16     4
## ... with 5 more variables: logLik <dbl>, AIC <dbl>, BIC <dbl>, deviance <dbl>,
##   df.residual <int>
4

2 に答える 2

3

モデル式のリストを作成する方が簡単だと思います。各モデルは、対応するcontinent. formula入れ子になったデータに新しい列を追加して、formulacontinentが同じ順序になっていることを確認します。

formulae <- c(
    Asia= lifeExp ~ year,
    Europe= lifeExp ~ year + pop,
    Africa= lifeExp ~ year + gdpPercap,
    Americas= lifeExp ~ year - 1,
    Oceania= lifeExp ~ year + pop + gdpPercap
)

df <- gapminder %>%
    group_by(continent) %>%
    nest() %>%
    mutate(formula = formulae[as.character(continent)]) %>%
    mutate(model = map2(formula, data, ~ lm(.x, .y))) %>%
    mutate(glance=map(model, glance)) %>%
    unnest(glance, .drop=T)

# # A tibble: 5 × 12
#   continent r.squared adj.r.squared     sigma  statistic       p.value    df      logLik        AIC        BIC
#      <fctr>     <dbl>         <dbl>     <dbl>      <dbl>         <dbl> <int>       <dbl>      <dbl>      <dbl>
# 1      Asia 0.4356350     0.4342026 8.9244419   304.1298  6.922751e-51     2 -1427.65947 2861.31893 2873.26317
# 2    Europe 0.4984677     0.4956580 3.8584819   177.4093  3.186760e-54     3  -995.41016 1998.82033 2014.36475
# 3    Africa 0.4160797     0.4141991 7.0033542   221.2506  2.836552e-73     3 -2098.46089 4204.92179 4222.66639
# 4  Americas 0.9812082     0.9811453 8.9703814 15612.1901 4.227928e-260     1 -1083.35918 2170.71836 2178.12593
# 5   Oceania 0.9733268     0.9693258 0.6647653   243.2719  6.662577e-16     4   -22.06696   54.13392   60.02419
# # ... with 2 more variables: deviance <dbl>, df.residual <int>
于 2017-01-01T03:33:02.953 に答える