Fipy を使用して 2 つのパラメーターまたは定数を含む偏微分方程式のシステムを解いているので、Fipy でこれらのパラメーターを推定することも可能かどうか、または他のどのライブラリがより適切であるかを知りたいです。
注: scipy にはそのための関数 (MLE のoptimize.minimize) があることは知っていますが、それらを Fipy のコードに適用するのが適切かどうかはわかりません。
更新:以下のPDEシステムでは、「ベータ」と「m」の2つの未知のパラメーターを推定したい
Fipy でこの偏微分方程式を解く関数は次のようになります。
import scipy as sci
import fipy as fipy
import numpy as np
from fipy import *
# Grid
nx = 100
ny = 100
dx = 1.
dy = dx
mesh = Grid2D(nx=nx, ny=ny, dx=dx, dy=dy)
x = mesh.cellCenters[0]
y = mesh.cellCenters[1]
# Setting variable of results and adding inicial conditions
u = CellVariable(name="Individual 1", mesh=mesh, value=0.)
u.setValue(1., where=(50. < x) & (70. > x) & (50. < y) & (70. > y))
v = CellVariable(name="Individual 2", mesh=mesh, value=0.)
v.setValue(1., where=(40. < x) & (60. > x) & (40. < y) & (60. > y))
p = CellVariable(name= "Marks Individual 1", mesh=mesh, value=0.)
p.setValue(1., where=(50. < x) & (70. > x) & (50. < y) & (70. > y))
q = CellVariable(name= "Marks Individual 2", mesh=mesh, value=0.)
q.setValue(1., where=(40. < x) & (60. > x) & (40. < y) & (60. > y))
# Plotting inicial conditions
if __name__ == '__main__':
viewer = Viewer(u, v, datamin=0., datamax=1.)
viewer.plot()
# Setting PDE
def HRMLE(params):
m = params[0]
beta = params[1]
D = 1.
CU = CellVariable(mesh=mesh, rank=1)
CU[:]= 1.
CU.setValue(-1., where = (x > 60.) * [[[1], [0]]])
CU.setValue(-1., where = (y > 60.) * [[[0], [1]]])
CV = CellVariable(mesh=mesh, rank=1)
CV[:]=1.
CV.setValue(-1., where = (x > 50.) * [[[1], [0]]])
CV.setValue(-1., where = (y > 50.) * [[[0], [1]]])
# Transient formulation
eqU = TransientTerm() == DiffusionTerm(coeff=D) -\
ConvectionTerm(coeff=CU*q.value*beta)
eqV = TransientTerm() == DiffusionTerm(coeff=D) -\
ConvectionTerm(coeff=CV*p.value*beta)
eqP = TransientTerm() == u*(1 + m*q) - p
eqQ = TransientTerm() == v*(1 + m*p) - q
# Solving Transient term
timeStepDuration = 1.
steps = 50
t = timeStepDuration * steps
for step in range(steps):
eqU.solve(var=u, dt=timeStepDuration)
eqV.solve(var=v, dt=timeStepDuration)
eqP.solve(var=p, dt=timeStepDuration)
eqQ.solve(var=q, dt=timeStepDuration)
# Plotting results
#if __name__ == '__main__':
# vieweru = Viewer(u, datamin=0., datamax=1.)
# viewerv = Viewer(v, datamin=0., datamax=1.)
# vieweru.plot()
# viewerv.plot()
loglink = np.sum(np.log(u.value)) + np.sum(np.log(v.value))
return(loglink)
最後に、最大の可能性基準について、私は最大化したいと思います:
初期値を設定し、scipy を使用する
mb = [0., .5]
mb
results = sci.optimize.minimize(HRMLE, mb, method='Nelder-Mead')
results
結果は、パラメーターの初期値に常に近い値を示しています。これが、手順が正しいかどうかわからない理由です。どんな提案でも大歓迎です。