viacsv.py ファイルに、カスタム バンドルを取り込めるようにするための次のコードがあります。
#
# Ingest stock csv files to create a zipline data bundle
import os
import numpy as np
import pandas as pd
import datetime
boDebug=True # Set True to get trace messages
from zipline.utils.cli import maybe_show_progress
def viacsv(symbols,start=None,end=None):
# strict this in memory so that we can reiterate over it.
# (Because it could be a generator and they live only once)
tuSymbols = tuple(symbols)
if boDebug:
print "entering viacsv. tuSymbols=",tuSymbols
# Define our custom ingest function
def ingest(environ,
asset_db_writer,
minute_bar_writer, # unused
daily_bar_writer,
adjustment_writer,
calendar,
cache,
show_progress,
output_dir,
# pass these as defaults to make them 'nonlocal' in py2
start=start,
end=end):
if boDebug:
print "entering ingest and creating blank dfMetadata"
dfMetadata = pd.DataFrame(np.empty(len(tuSymbols), dtype=[
('start_date', 'datetime64[ns]'),
('end_date', 'datetime64[ns]'),
('auto_close_date', 'datetime64[ns]'),
('symbol', 'object'),
]))
if boDebug:
print "dfMetadata",type(dfMetadata)
print dfMetadata.describe
print
# We need to feed something that is iterable - like a list or a generator -
# that is a tuple with an integer for sid and a DataFrame for the data to
# daily_bar_writer
liData=[]
iSid=0
for S in tuSymbols:
IFIL="~/notebooks/csv/"+S+".csv"
if boDebug:
print "S=",S,"IFIL=",IFIL
dfData=pd.read_csv(IFIL,index_col='Date',parse_dates=True).sort_index()
if boDebug:
print "read_csv dfData",type(dfData),"length",len(dfData)
print
dfData.rename(
columns={
'Open': 'open',
'High': 'high',
'Low': 'low',
'Close': 'close',
'Volume': 'volume',
'Adj Close': 'price',
},
inplace=True,
)
dfData['volume']=dfData['volume']/1000
liData.append((iSid,dfData))
# the start date is the date of the first trade and
start_date = dfData.index[0]
if boDebug:
print "start_date",type(start_date),start_date
# the end date is the date of the last trade
end_date = dfData.index[-1]
if boDebug:
print "end_date",type(end_date),end_date
# The auto_close date is the day after the last trade.
ac_date = end_date + pd.Timedelta(days=1)
if boDebug:
print "ac_date",type(ac_date),ac_date
# Update our meta data
dfMetadata.iloc[iSid] = start_date, end_date, ac_date, S
iSid += 1
if boDebug:
print "liData",type(liData),"length",len(liData)
print liData
print
print "Now calling daily_bar_writer"
daily_bar_writer.write(liData, show_progress=False)
# Hardcode the exchange to "YAHOO" for all assets and (elsewhere)
# register "YAHOO" to resolve to the NYSE calendar, because these are
# all equities and thus can use the NYSE calendar.
dfMetadata['exchange'] = "YAHOO"
if boDebug:
print "returned from daily_bar_writer"
print "calling asset_db_writer"
print "dfMetadata",type(dfMetadata)
print dfMetadata
print
# Not sure why symbol_map is needed
symbol_map = pd.Series(dfMetadata.symbol.index, dfMetadata.symbol)
if boDebug:
print "symbol_map",type(symbol_map)
print symbol_map
print
asset_db_writer.write(equities=dfMetadata)
if boDebug:
print "returned from asset_db_writer"
print "calling adjustment_writer"
adjustment_writer.write()
if boDebug:
print "returned from adjustment_writer"
print "now leaving ingest function"
if boDebug:
print "about to return ingest function"
return ingest
私の問題は、フィードしているデータが米国のデータではなく、オーストラリアの株式データであることです。そのため、米国の祝日ではなく、オーストラリアの祝日に従います。どういうわけか、以下のコードはデフォルトで米国の取引カレンダーを使用しているようで、米国市場が閉鎖される日のデータを渡すことはできず、その逆も同様です。上記のコードを微調整して、カスタム カレンダーを取り込むにはどうすればよいですか? バンドルを取り込むには、端末で次のコマンドを実行します。
zipline ingest -b CBA.csv
考え?