0

テンソルフローの legacy_seq2seq

x = linear([inp] + attns, input_size, True)
# Run the RNN.
cell_output, state = cell(x, state)
# Run the attention mechanism.
if i == 0 and initial_state_attention:
  with variable_scope.variable_scope(variable_scope.get_variable_scope(), reuse=True):
    attns = attention(state)
else:
  attns = attention(state)
with variable_scope.variable_scope("AttnOutputProjection"):
  output = linear([cell_output] + attns, output_size, True)

私の質問は、出力として cell_output を使用するだけでなく、cell_output を attns と組み合わせる必要があるのはなぜですか?

ありがとう

4

1 に答える 1