0

AWS S3 バケットを作成し、Jupyter ノートブックでサンプル kmeans の例を試しました。アカウント所有者として読み取り/書き込み権限がありますが、次のエラーでログを書き込めません。

 ClientError: An error occurred (AccessDenied) when calling the PutObject operation: Access Denied

kmeans のサンプル コードは次のとおりです。

 from sagemaker import get_execution_role
 role = get_execution_role()
 bucket='testingshk' 

 import pickle, gzip, numpy, urllib.request, json
urllib.request.urlretrieve("http://deeplearning.net/data/mnist/mnist.pkl.gz", "mnist.pkl.gz")
 with gzip.open('mnist.pkl.gz', 'rb') as f:
 train_set, valid_set, test_set = pickle.load(f, encoding='latin1')

 from sagemaker import KMeans
 data_location = 's3://{}/kmeans_highlevel_example/data'.format(bucket)
 output_location = 's3://{}/kmeans_example/output'.format(bucket)

 print('training data will be uploaded to: {}'.format(data_location))
 print('training artifacts will be uploaded to: {}'.format(output_location))

 kmeans = KMeans(role=role,
            train_instance_count=2,
            train_instance_type='ml.c4.8xlarge',
            output_path=output_location,
            k=10,
            data_location=data_location)
 kmeans.fit(kmeans.record_set(train_set[0]))
4

1 に答える 1