11

Unity で加速と減速をエミュレートしようとしています。

Unity でトラックを生成し、時間に基づいてトラック上の特定の場所にオブジェクトを配置するコードを作成しました。結果はこんな感じ。

Catmull-Rom スプラインの途中にある立方体

私が現在抱えている問題は、スプラインの各セクションの長さが異なり、立方体が各セクションを異なるが均一な速度で移動することです。これにより、セクション間の遷移時にキューブの速度の変化が突然ジャンプします。

この問題を解決するために、 Robert Penner のイージング方程式GetTime(Vector3 p0, Vector3 p1, float alpha)メソッドで使用しようとしました。ただし、これはある程度は役に立ちましたが、十分ではありませんでした。トランジションの間にまだ速度のジャンプがありました。

トラックのセグメント間で速度が大きくジャンプすることなく、キューブの位置を動的に緩和して、キューブが加速および減速しているように見せる方法について、誰かアイデアはありますか?


コードの簡単な実装を示すスクリプトを作成しました。任意のゲーム オブジェクトに取り付けることができます。コードの実行時に何が起こっているかを簡単に確認できるように、立方体や球体などに取り付けます。

using System.Collections.Generic;
using UnityEngine;
#if UNITY_EDITOR
using UnityEditor;
#endif

public class InterpolationExample : MonoBehaviour {
    [Header("Time")]
    [SerializeField]
    private float currentTime;
    private float lastTime = 0;
    [SerializeField]
    private float timeModifier = 1;
    [SerializeField]
    private bool running = true;
    private bool runningBuffer = true;

    [Header("Track Settings")]
    [SerializeField]
    [Range(0, 1)]
    private float catmullRomAlpha = 0.5f;
    [SerializeField]
    private List<SimpleWayPoint> wayPoints = new List<SimpleWayPoint>
    {
        new SimpleWayPoint() {pos = new Vector3(-4.07f, 0, 6.5f), time = 0},
        new SimpleWayPoint() {pos = new Vector3(-2.13f, 3.18f, 6.39f), time = 1},
        new SimpleWayPoint() {pos = new Vector3(-1.14f, 0, 4.55f), time = 6},
        new SimpleWayPoint() {pos = new Vector3(0.07f, -1.45f, 6.5f), time = 7},
        new SimpleWayPoint() {pos = new Vector3(1.55f, 0, 3.86f), time = 7.2f},
        new SimpleWayPoint() {pos = new Vector3(4.94f, 2.03f, 6.5f), time = 10}
    };

    [Header("Debug")]
    [Header("WayPoints")]
    [SerializeField]
    private bool debugWayPoints = true;
    [SerializeField]
    private WayPointDebugType debugWayPointType = WayPointDebugType.SOLID;
    [SerializeField]
    private float debugWayPointSize = 0.2f;
    [SerializeField]
    private Color debugWayPointColour = Color.green;
    [Header("Track")]
    [SerializeField]
    private bool debugTrack = true;
    [SerializeField]
    [Range(0, 1)]
    private float debugTrackResolution = 0.04f;
    [SerializeField]
    private Color debugTrackColour = Color.red;

    [System.Serializable]
    private class SimpleWayPoint
    {
        public Vector3 pos;
        public float time;
    }

    [System.Serializable]
    private enum WayPointDebugType
    {
        SOLID,
        WIRE
    }

    private void Start()
    {
        wayPoints.Sort((x, y) => x.time.CompareTo(y.time));
        wayPoints.Insert(0, wayPoints[0]);
        wayPoints.Add(wayPoints[wayPoints.Count - 1]);
    }

    private void LateUpdate()
    {
        //This means that if currentTime is paused, then resumed, there is not a big jump in time
        if(runningBuffer != running)
        {
            runningBuffer = running;
            lastTime = Time.time;
        }

        if(running)
        {
            currentTime += (Time.time - lastTime) * timeModifier;
            lastTime = Time.time;
            if(currentTime > wayPoints[wayPoints.Count - 1].time)
            {
                currentTime = 0;
            }
        }
        transform.position = GetPosition(currentTime);
    }

    #region Catmull-Rom Math
    public Vector3 GetPosition(float time)
    {
        //Check if before first waypoint
        if(time <= wayPoints[0].time)
        {
            return wayPoints[0].pos;
        }
        //Check if after last waypoint
        else if(time >= wayPoints[wayPoints.Count - 1].time)
        {
            return wayPoints[wayPoints.Count - 1].pos;
        }

        //Check time boundaries - Find the nearest WayPoint your object has passed
        float minTime = -1;
        float maxTime = -1;
        int minIndex = -1;
        for(int i = 1; i < wayPoints.Count; i++)
        {
            if(time > wayPoints[i - 1].time && time <= wayPoints[i].time)
            {
                maxTime = wayPoints[i].time;
                int index = i - 1;
                minTime = wayPoints[index].time;
                minIndex = index;
            }
        }

        float timeDiff = maxTime - minTime;
        float percentageThroughSegment = 1 - ((maxTime - time) / timeDiff);

        //Define the 4 points required to make a Catmull-Rom spline
        Vector3 p0 = wayPoints[ClampListPos(minIndex - 1)].pos;
        Vector3 p1 = wayPoints[minIndex].pos;
        Vector3 p2 = wayPoints[ClampListPos(minIndex + 1)].pos;
        Vector3 p3 = wayPoints[ClampListPos(minIndex + 2)].pos;

        return GetCatmullRomPosition(percentageThroughSegment, p0, p1, p2, p3, catmullRomAlpha);
    }

    //Prevent Index Out of Array Bounds
    private int ClampListPos(int pos)
    {
        if(pos < 0)
        {
            pos = wayPoints.Count - 1;
        }

        if(pos > wayPoints.Count)
        {
            pos = 1;
        }
        else if(pos > wayPoints.Count - 1)
        {
            pos = 0;
        }

        return pos;
    }

    //Math behind the Catmull-Rom curve. See here for a good explanation of how it works. https://stackoverflow.com/a/23980479/4601149
    private Vector3 GetCatmullRomPosition(float t, Vector3 p0, Vector3 p1, Vector3 p2, Vector3 p3, float alpha)
    {
        float dt0 = GetTime(p0, p1, alpha);
        float dt1 = GetTime(p1, p2, alpha);
        float dt2 = GetTime(p2, p3, alpha);

        Vector3 t1 = ((p1 - p0) / dt0) - ((p2 - p0) / (dt0 + dt1)) + ((p2 - p1) / dt1);
        Vector3 t2 = ((p2 - p1) / dt1) - ((p3 - p1) / (dt1 + dt2)) + ((p3 - p2) / dt2);

        t1 *= dt1;
        t2 *= dt1;

        Vector3 c0 = p1;
        Vector3 c1 = t1;
        Vector3 c2 = (3 * p2) - (3 * p1) - (2 * t1) - t2;
        Vector3 c3 = (2 * p1) - (2 * p2) + t1 + t2;
        Vector3 pos = CalculatePosition(t, c0, c1, c2, c3);

        return pos;
    }

    private float GetTime(Vector3 p0, Vector3 p1, float alpha)
    {
        if(p0 == p1)
            return 1;
        return Mathf.Pow((p1 - p0).sqrMagnitude, 0.5f * alpha);
    }

    private Vector3 CalculatePosition(float t, Vector3 c0, Vector3 c1, Vector3 c2, Vector3 c3)
    {
        float t2 = t * t;
        float t3 = t2 * t;
        return c0 + c1 * t + c2 * t2 + c3 * t3;
    }

    //Utility method for drawing the track
    private void DisplayCatmullRomSpline(int pos, float resolution)
    {
        Vector3 p0 = wayPoints[ClampListPos(pos - 1)].pos;
        Vector3 p1 = wayPoints[pos].pos;
        Vector3 p2 = wayPoints[ClampListPos(pos + 1)].pos;
        Vector3 p3 = wayPoints[ClampListPos(pos + 2)].pos;

        Vector3 lastPos = p1;
        int maxLoopCount = Mathf.FloorToInt(1f / resolution);

        for(int i = 1; i <= maxLoopCount; i++)
        {
            float t = i * resolution;
            Vector3 newPos = GetCatmullRomPosition(t, p0, p1, p2, p3, catmullRomAlpha);
            Gizmos.DrawLine(lastPos, newPos);
            lastPos = newPos;
        }
    }
    #endregion

    private void OnDrawGizmos()
    {
        #if UNITY_EDITOR
        if(EditorApplication.isPlaying)
        {
            if(debugWayPoints)
            {
                Gizmos.color = debugWayPointColour;
                foreach(SimpleWayPoint s in wayPoints)
                {
                    if(debugWayPointType == WayPointDebugType.SOLID)
                    {
                        Gizmos.DrawSphere(s.pos, debugWayPointSize);
                    }
                    else if(debugWayPointType == WayPointDebugType.WIRE)
                    {
                        Gizmos.DrawWireSphere(s.pos, debugWayPointSize);
                    }
                }
            }

            if(debugTrack)
            {
                Gizmos.color = debugTrackColour;
                if(wayPoints.Count >= 2)
                {
                    for(int i = 0; i < wayPoints.Count; i++)
                    {
                        if(i == 0 || i == wayPoints.Count - 2 || i == wayPoints.Count - 1)
                        {
                            continue;
                        }

                        DisplayCatmullRomSpline(i, debugTrackResolution);
                    }
                }
            }
        }
        #endif
    }
}
4

4 に答える 4

0

最初にいくつかの用語を定義しましょう。

  1. t0: からまでの各スプラインの補間変数1
  2. s: 各スプラインの長さ。使用するスプラインのタイプ (catmull-rom、bezier など) に応じて、推定全長を計算する式があります。
  3. dtt:フレームごとの変化。あなたの場合、これがすべての異なるスプラインで一定である場合、各スプラインの長さが異なるため、スプラインの終点で急激な速度の変化が見られますs

各ジョイントでの速度変化を緩和する最も簡単な方法は次のとおりです。

void Update() {
    float dt = 0.05f; //this is currently your "global" interpolation speed, for all splines
    float v0 = s0/dt; //estimated linear speed in the first spline.
    float v1 = s1/dt; //estimated linear speed in the second spline.
    float dt0 = interpSpeed(t0, v0, v1) / s0; //t0 is the current interpolation variable where the object is at, in the first spline
    transform.position = GetCatmullRomPosition(t0 + dt0*Time.deltaTime, ...); //update your new position in first spline
}

どこ:

float interpSpeed(float t, float v0, float v1, float tEaseStart=0.5f) {
    float u = (t - tEaseStart)/(1f - tEaseStart);
    return Mathf.Lerp(v0, v1, u);
}

上記の直感は、最初のスプラインの終わりに到達するときに、次のスプラインで予想される速度を予測し、現在の速度を緩和してそこに到達するというものです。

最後に、イージングの見栄えを良くするために、次のようにします。

  • で非線形補間関数を使用することを検討してくださいinterpSpeed()
  • 2 番目のスプラインの開始時にも「イーズイン」を実装することを検討してください
于 2018-06-12T03:18:58.707 に答える