2

私は PyTorch のさまざまなチュートリアルに従っています。GPU の速度を使用しようとしていますが、Web サイトで発表されている実行時間と現実の間に問題が発生しています。 https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html

このページの最後にコードがあります。私のコンピューターでは、プログラムが 6/7 分で終了したのに対し、1 分 30 秒で終了したことが読み取れます。試してみて、何時間あるか教えてください!Web サイトと同じファイル コードを使用して大きな違いが見られて非常に混乱しています。これにより、問題が GPU に起因するかどうかを理解できます:)

私の設定:GTX 1080Ti Windows10 Cuda 9.1 Pytorch 0.4.0

コード:

if __name__ == "__main__":


    plt.ion()   # interactive mode

    ######################################################################
    # Load Data
    # ---------
    #
    # We will use torchvision and torch.utils.data packages for loading the
    # data.
    #
    # The problem we're going to solve today is to train a model to classify
    # **ants** and **bees**. We have about 120 training images each for ants and bees.
    # There are 75 validation images for each class. Usually, this is a very
    # small dataset to generalize upon, if trained from scratch. Since we
    # are using transfer learning, we should be able to generalize reasonably
    # well.
    #
    # This dataset is a very small subset of imagenet.
    #
    # .. Note ::
    #    Download the data from
    #    `here <https://download.pytorch.org/tutorial/hymenoptera_data.zip>`_
    #    and extract it to the current directory.

    # Data augmentation and normalization for training
    # Just normalization for validation
    data_transforms = {
        'train': transforms.Compose([
            transforms.RandomResizedCrop(224),
            transforms.RandomHorizontalFlip(),
            transforms.ToTensor(),
            transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
        ]),
        'val': transforms.Compose([
            transforms.Resize(256),
            transforms.CenterCrop(224),
            transforms.ToTensor(),
            transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
        ]),
    }

    data_dir = 'hymenoptera_data'
    image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x),
                                              data_transforms[x])
                      for x in ['train', 'val']}
    dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=4,
                                                 shuffle=True, num_workers=4)
                  for x in ['train', 'val']}
    dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']}
    class_names = image_datasets['train'].classes

    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

    ######################################################################
    # Visualize a few images
    # ^^^^^^^^^^^^^^^^^^^^^^
    # Let's visualize a few training images so as to understand the data
    # augmentations.

    def imshow(inp, title=None):
        """Imshow for Tensor."""
        inp = inp.numpy().transpose((1, 2, 0))
        mean = np.array([0.485, 0.456, 0.406])
        std = np.array([0.229, 0.224, 0.225])
        inp = std * inp + mean
        inp = np.clip(inp, 0, 1)
        plt.imshow(inp)
        if title is not None:
            plt.title(title)
        plt.pause(0.001)  # pause a bit so that plots are updated


    # Get a batch of training data
    inputs, classes = next(iter(dataloaders['train']))

    # Make a grid from batch
    out = torchvision.utils.make_grid(inputs)

    imshow(out, title=[class_names[x] for x in classes])


    ######################################################################
    # Training the model
    # ------------------
    #
    # Now, let's write a general function to train a model. Here, we will
    # illustrate:
    #
    # -  Scheduling the learning rate
    # -  Saving the best model
    #
    # In the following, parameter ``scheduler`` is an LR scheduler object from
    # ``torch.optim.lr_scheduler``.


    def train_model(model, criterion, optimizer, scheduler, num_epochs=25):
        since = time.time()

        best_model_wts = copy.deepcopy(model.state_dict())
        best_acc = 0.0

        for epoch in range(num_epochs):
            print('Epoch {}/{}'.format(epoch, num_epochs - 1))
            print('-' * 10)

            # Each epoch has a training and validation phase
            for phase in ['train', 'val']:
                if phase == 'train':
                    scheduler.step()
                    model.train()  # Set model to training mode
                else:
                    model.eval()   # Set model to evaluate mode

                running_loss = 0.0
                running_corrects = 0

                # Iterate over data.
                for inputs, labels in dataloaders[phase]:
                    inputs = inputs.to(device)
                    labels = labels.to(device)

                    # zero the parameter gradients
                    optimizer.zero_grad()

                    # forward
                    # track history if only in train
                    with torch.set_grad_enabled(phase == 'train'):
                        outputs = model(inputs)
                        _, preds = torch.max(outputs, 1)
                        loss = criterion(outputs, labels)

                        # backward + optimize only if in training phase
                        if phase == 'train':
                            loss.backward()
                            optimizer.step()

                    # statistics
                    running_loss += loss.item() * inputs.size(0)
                    running_corrects += torch.sum(preds == labels.data)

                epoch_loss = running_loss / dataset_sizes[phase]
                epoch_acc = running_corrects.double() / dataset_sizes[phase]

                print('{} Loss: {:.4f} Acc: {:.4f}'.format(
                    phase, epoch_loss, epoch_acc))

                # deep copy the model
                if phase == 'val' and epoch_acc > best_acc:
                    best_acc = epoch_acc
                    best_model_wts = copy.deepcopy(model.state_dict())

            print()

        time_elapsed = time.time() - since
        print('Training complete in {:.0f}m {:.0f}s'.format(
            time_elapsed // 60, time_elapsed % 60))
        print('Best val Acc: {:4f}'.format(best_acc))

        # load best model weights
        model.load_state_dict(best_model_wts)
        return model


    ######################################################################
    # Visualizing the model predictions
    # ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
    #
    # Generic function to display predictions for a few images
    #

    def visualize_model(model, num_images=6):
        was_training = model.training
        model.eval()
        images_so_far = 0
        fig = plt.figure()

        with torch.no_grad():
            for i, (inputs, labels) in enumerate(dataloaders['val']):
                inputs = inputs.to(device)
                labels = labels.to(device)

                outputs = model(inputs)
                _, preds = torch.max(outputs, 1)

                for j in range(inputs.size()[0]):
                    images_so_far += 1
                    ax = plt.subplot(num_images//2, 2, images_so_far)
                    ax.axis('off')
                    ax.set_title('predicted: {}'.format(class_names[preds[j]]))
                    imshow(inputs.cpu().data[j])

                    if images_so_far == num_images:
                        model.train(mode=was_training)
                        return
            model.train(mode=was_training)

    ######################################################################
    # Finetuning the convnet
    # ----------------------
    #
    # Load a pretrained model and reset final fully connected layer.
    #

    model_ft = models.resnet18(pretrained=True)
    num_ftrs = model_ft.fc.in_features
    model_ft.fc = nn.Linear(num_ftrs, 2)

    model_ft = model_ft.to(device)

    criterion = nn.CrossEntropyLoss()

    # Observe that all parameters are being optimized
    optimizer_ft = optim.SGD(model_ft.parameters(), lr=0.001, momentum=0.9)

    # Decay LR by a factor of 0.1 every 7 epochs
    exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)

    ######################################################################
    # Train and evaluate
    # ^^^^^^^^^^^^^^^^^^
    #
    # It should take around 15-25 min on CPU. On GPU though, it takes less than a
    # minute.
    #

    model_ft = train_model(model_ft, criterion, optimizer_ft, exp_lr_scheduler,
                           num_epochs=25)

    ######################################################################
    #

    visualize_model(model_ft)


    ######################################################################
    # ConvNet as fixed feature extractor
    # ----------------------------------
    #
    # Here, we need to freeze all the network except the final layer. We need
    # to set ``requires_grad == False`` to freeze the parameters so that the
    # gradients are not computed in ``backward()``.
    #
    # You can read more about this in the documentation
    # `here <http://pytorch.org/docs/notes/autograd.html#excluding-subgraphs-from-backward>`__.
    #

    model_conv = torchvision.models.resnet18(pretrained=True)
    for param in model_conv.parameters():
        param.requires_grad = False

    # Parameters of newly constructed modules have requires_grad=True by default
    num_ftrs = model_conv.fc.in_features
    model_conv.fc = nn.Linear(num_ftrs, 2)

    model_conv = model_conv.to(device)

    criterion = nn.CrossEntropyLoss()

    # Observe that only parameters of final layer are being optimized as
    # opoosed to before.
    optimizer_conv = optim.SGD(model_conv.fc.parameters(), lr=0.001, momentum=0.9)

    # Decay LR by a factor of 0.1 every 7 epochs
    exp_lr_scheduler = lr_scheduler.StepLR(optimizer_conv, step_size=7, gamma=0.1)


    ######################################################################
    # Train and evaluate
    # ^^^^^^^^^^^^^^^^^^
    #
    # On CPU this will take about half the time compared to previous scenario.
    # This is expected as gradients don't need to be computed for most of the
    # network. However, forward does need to be computed.
    #

    model_conv = train_model(model_conv, criterion, optimizer_conv,
                             exp_lr_scheduler, num_epochs=25)

    ######################################################################
    #

    visualize_model(model_conv)

    plt.ioff()
    plt.show()

すべての体に感謝します!

4

1 に答える 1