そこで、画像処理で難しいトピックに取り組む前に、演習として単純な Canny エッジ検出器を作成することにしました。
私はキャニーの典型的な道をたどろうとしました: 1. 画像をグレースケール化する 2. ノイズをぼかすためのガウス フィルター 3. エッジ検出 - 私は Sobel と Scharr の両方を使用します 4. エッジ細線化 - 勾配に応じて方向に非最大抑制を使用しました方向 - 垂直、水平、45 対角または 135 対角 5. ヒステリシス
私はどういうわけかScharrの検出でそれを機能させることができましたが、特にSobelでは、二重または複数のエッジで問題が繰り返し発生しています。それを機能させる一連のパラメーターを実際に見つけることができません。
ソーベルの私のアルゴリズム:
void sobel(sf::Image &image, pixldata **garray, float division)
{
int t1 = 0, t2 = 0, t3 = 0, t4 = 0;
sf::Color color;
sf::Image bufor;
bufor.create(image.getSize().x, image.getSize().y, sf::Color::Cyan);
for (int i = 1;i < image.getSize().y - 1;i++)
{
for (int j = 1;j < image.getSize().x - 1;j++)
{
t1 = (- image.getPixel(j - 1, i - 1).r - 2 * image.getPixel(j - 1, i).r - image.getPixel(j - 1, i + 1).r + image.getPixel(j + 1, i - 1).r + 2 * image.getPixel(j + 1, i).r + image.getPixel(j + 1, i + 1).r) / division;
t2 = (- image.getPixel(j - 1, i).r - 2 * image.getPixel(j - 1, i + 1).r - image.getPixel(j, i + 1).r + image.getPixel(j + 1, i).r + 2 * image.getPixel(j + 1, i - 1).r + image.getPixel(j, i - 1).r) / division;
t3 = (- image.getPixel(j - 1, i + 1).r - 2 * image.getPixel(j, i + 1).r - image.getPixel(j + 1, i + 1).r + image.getPixel(j - 1, i - 1).r + 2 * image.getPixel(j, i - 1).r + image.getPixel(j + 1, i - 1).r) / division;
t4 = (- image.getPixel(j, i + 1).r - 2 * image.getPixel(j + 1, i + 1).r - image.getPixel(j + 1, i).r + image.getPixel(j - 1, i).r + 2 * image.getPixel(j - 1, i - 1).r + image.getPixel(j, i - 1).r) / division;
color.r = (abs(t1) + abs(t2) + abs(t3) + abs(t4));
color.g = (abs(t1) + abs(t2) + abs(t3) + abs(t4));
color.b = (abs(t1) + abs(t2) + abs(t3) + abs(t4));
garray[j][i].gx = t1;
garray[j][i].gy = t3;
garray[j][i].gtrue = sqrt(t1*t1 + t2*t2 + t3*t3 + t4*t4);
garray[j][i].gsimpl = sqrt(t1*t1 + t2*t2);
t1 = abs(t1);
t2 = abs(t2);
t3 = abs(t3);
t4 = abs(t4);
if (t1 > t4 && t1 > t3 && t1 > t2)
garray[j][i].fi = 0;
else if (t2 > t4 && t2 > t3 && t2 > t1)
garray[j][i].fi = 45;
else if (t3 > t4 && t3 > t2 && t3 > t1)
garray[j][i].fi = 90;
else if (t4 > t3 && t4 > t2 && t4 > t1)
garray[j][i].fi = 135;
else
garray[j][i].fi = 0;
if (sqrt(t1*t1 + t2*t2 + t3*t3 + t4*t4) < 0)
{
color.r = 0;
color.g = 0;
color.b = 0;
}
else if (sqrt(t1*t1 + t2*t2 + t3*t3 + t4*t4) > 255)
{
color.r = 255;
color.g = 255;
color.b = 255;
}
else
{
color.r = sqrt(t1*t1 + t2*t2 + t3*t3 + t4*t4);
color.g = sqrt(t1*t1 + t2*t2 + t3*t3 + t4*t4);
color.b = sqrt(t1*t1 + t2*t2 + t3*t3 + t4*t4);
}
bufor.setPixel(j, i, color);
}
}
image.copy(bufor, 0, 0);
}
Scharr のコードが異なるのは、ピクセル値の乗算だけです。
t1 = (-3 * image.getPixel(j - 1, i - 1).r - 10 * image.getPixel(j - 1, i).r - 3 * image.getPixel(j - 1, i + 1).r + 3 * image.getPixel(j + 1, i - 1).r + 10 * image.getPixel(j + 1, i).r + 3 * image.getPixel(j + 1, i + 1).r) / division;
t2 = (-3 * image.getPixel(j - 1, i).r - 10 * image.getPixel(j - 1, i + 1).r - 3 * image.getPixel(j, i + 1).r + 3 * image.getPixel(j + 1, i).r + 10 * image.getPixel(j + 1, i - 1).r + 3 * image.getPixel(j, i - 1).r) / division;
t3 = (-3 * image.getPixel(j - 1, i + 1).r - 10 * image.getPixel(j, i + 1).r - 3 * image.getPixel(j + 1, i + 1).r + 3 * image.getPixel(j - 1, i - 1).r + 10 * image.getPixel(j, i - 1).r + 3 * image.getPixel(j + 1, i - 1).r) / division;
t4 = (-3 * image.getPixel(j, i + 1).r - 10 * image.getPixel(j + 1, i + 1).r - 3 * image.getPixel(j + 1, i).r + 3 * image.getPixel(j - 1, i).r + 10 * image.getPixel(j - 1, i - 1).r + 3 * image.getPixel(j, i - 1).r) / division;
間引きコード:
void intelligentThin(sf::Image &image, int radius, pixldata **garray)
{
int xmax = image.getSize().x;
int ymax = image.getSize().y;
bool judgeandjury = true;
for (int i = 0;i < xmax;i++)
{
int leftBound = 0, rightBound = 0, ceilBound = 0, bottomBound = 0;
if (i < radius)
{
leftBound = 0;
rightBound = i + radius;
}
else if (i >= xmax - radius)
{
leftBound = i - radius;
rightBound = xmax - 1;
}
else
{
leftBound = i - radius;
rightBound = i + radius;
}
for (int j = 0;j < ymax;j++)
{
if (j < radius)
{
ceilBound = 0;
bottomBound = j + radius;
}
else if (j >= ymax - radius)
{
ceilBound = j - radius;
bottomBound = ymax - 1;
}
else
{
ceilBound = j - radius;
bottomBound = j + radius;
}
if (garray[i][j].fi == 0)
{
for (int t = leftBound; t <= rightBound; t++)
{
if ((image.getPixel(t, j).r >= image.getPixel(i, j).r) && (t != i))
{
judgeandjury = false;
}
}
}
else if (garray[i][j].fi == 135)
{
for (int l = leftBound, t = ceilBound; (l <= rightBound && t <= bottomBound); l++, t++)
{
if ((image.getPixel(l, t).r >= image.getPixel(i, j).r) && (t != j))
{
judgeandjury = false;
}
}
}
else if (garray[i][j].fi == 90)
{
for (int t = ceilBound; t <= bottomBound; t++)
{
if ((image.getPixel(i, t).r >= image.getPixel(i, j).r) && (t != j))
{
judgeandjury = false;
}
}
}
else if (garray[i][j].fi == 45)
{
for (int l = rightBound, t = ceilBound; (l >= leftBound && t <= bottomBound); l--, t++)
{
if ((image.getPixel(l, t).r >= image.getPixel(i, j).r) && (t != j))
{
judgeandjury = false;
}
}
}
if (judgeandjury == false)
{
image.setPixel(i, j, sf::Color::Black);
}
judgeandjury = true;
}
leftBound = rightBound = 0;
}
}
ヒステリシス コード:
void hysteresis(sf::Image &image, int radius, int uplevel, int lowlevel)
{
int xmax = image.getSize().x;
int ymax = image.getSize().y;
bool judgeandjury = false;
sf::Image bufor;
bufor.create(image.getSize().x, image.getSize().y, sf::Color::Cyan);
for (int i = 0;i < xmax;i++)
{
int leftBound = 0, rightBound = 0, ceilBound = 0, bottomBound = 0;
if (i < radius)
{
leftBound = 0;
rightBound = i + radius;
}
else if (i >= xmax - radius)
{
leftBound = i - radius;
rightBound = xmax - 1;
}
else
{
leftBound = i - radius;
rightBound = i + radius;
}
for (int j = 0;j < ymax;j++)
{
int currentPoint = image.getPixel(i, j).r;
if (j < radius)
{
ceilBound = 0;
bottomBound = j + radius;
}
else if (j >= ymax - radius)
{
ceilBound = j - radius;
bottomBound = ymax - 1;
}
else
{
ceilBound = j - radius;
bottomBound = j + radius;
}
if (currentPoint > uplevel)
{
judgeandjury = true;
}
else if (currentPoint > lowlevel)
{
for (int t = leftBound; t <= rightBound; t++)
{
for (int l = ceilBound; l <= bottomBound; l++)
{
if (image.getPixel(t, l).r > uplevel)
{
judgeandjury = true;
}
}
}
}
else judgeandjury = false;
if (judgeandjury == true)
{
bufor.setPixel(i, j, sf::Color::White);
}
else
{
bufor.setPixel(i, j, sf::Color::Black);
}
judgeandjury = false;
currentPoint = 0;
}
leftBound = rightBound = 0;
}
image.copy(bufor, 0, 0);
}
結果は Sobel にとって非常に満足のいくものではありません。
Scharr を使用すると、結果が大幅に向上します。
パラメータのセット:
#define thinsize 1
#define scharrDivision 1
#define sobelDivision 1
#define hysteresisRadius 1
#define level 40
#define hysteresisUpperLevelSobel 80
#define hysteresisLowerLevelSobel 60
#define hysteresisUpperLevelScharr 200
#define hysteresisLowerLevelScharr 100
ご覧のとおり、ダブル エッジを生成する Sobel に問題があります。Scharr も多少のノイズを発生しますが、許容できると思います。もちろん、誰かがアドバイスをくれれば、いつでも良くなる可能性があります:)
この動作の原因は何ですか? それは私の間違いやアルゴリズムの貧弱さによるものですか、それとも単にパラメータの問題でしょうか?
編集: main() の投稿
sf::Image imydz;
imydz.loadFromFile("lena.jpg");
int x = imydz.getSize().x;
int y = imydz.getSize().y;
pixldata **garray = new pixldata *[x];
for (int i = 0;i < x;i++)
{
garray[i] = new pixldata[y];
}
monochrome(imydz);
gauss(imydz, radius, sigma);
//sobel(imydz, garray, sobelDivision);
scharr(imydz, garray, scharrDivision);
intelligentThin(imydz, thinsize, garray);
hysteresis(imydz, hysteresisRadius, hysteresisUpperLevel, hysteresisLowerLevel);
2 番目の編集 - 抑制の修復:
sf::Image bufor;
bufor.create(image.getSize().x, image.getSize().y, sf::Color::Black);
for (int i = 1;i < xmax - 1;i++)
{
for (int j = 1;j < ymax - 1;j++)
{
if (garray[i][j].fi == 0)
{
if (((image.getPixel(i, j).r >= image.getPixel(i + 1, j).r) && (image.getPixel(i, j).r > image.getPixel(i - 1, j).r)) ||
((image.getPixel(i, j).r > image.getPixel(i + 1, j).r) && (image.getPixel(i, j).r >= image.getPixel(i - 1, j).r)))
{
judgeandjury = true;
}
else judgeandjury = false;
}
...
if (judgeandjury == false)
{
bufor.setPixel(i, j, sf::Color::Black);
}
else bufor.setPixel(i, j, image.getPixel(i, j));
judgeandjury = false;
}
}
image.copy(bufor, 0, 0);