わかりました、元の質問のリンクに基づいて固定小数点構造体について思いついたものですが、除算と乗算の処理方法に対するいくつかの修正、およびモジュール、比較、シフトなどのロジックの追加も含まれています:
public struct FInt
{
public long RawValue;
public const int SHIFT_AMOUNT = 12; //12 is 4096
public const long One = 1 << SHIFT_AMOUNT;
public const int OneI = 1 << SHIFT_AMOUNT;
public static FInt OneF = FInt.Create( 1, true );
#region Constructors
public static FInt Create( long StartingRawValue, bool UseMultiple )
{
FInt fInt;
fInt.RawValue = StartingRawValue;
if ( UseMultiple )
fInt.RawValue = fInt.RawValue << SHIFT_AMOUNT;
return fInt;
}
public static FInt Create( double DoubleValue )
{
FInt fInt;
DoubleValue *= (double)One;
fInt.RawValue = (int)Math.Round( DoubleValue );
return fInt;
}
#endregion
public int IntValue
{
get { return (int)( this.RawValue >> SHIFT_AMOUNT ); }
}
public int ToInt()
{
return (int)( this.RawValue >> SHIFT_AMOUNT );
}
public double ToDouble()
{
return (double)this.RawValue / (double)One;
}
public FInt Inverse
{
get { return FInt.Create( -this.RawValue, false ); }
}
#region FromParts
/// <summary>
/// Create a fixed-int number from parts. For example, to create 1.5 pass in 1 and 500.
/// </summary>
/// <param name="PreDecimal">The number above the decimal. For 1.5, this would be 1.</param>
/// <param name="PostDecimal">The number below the decimal, to three digits.
/// For 1.5, this would be 500. For 1.005, this would be 5.</param>
/// <returns>A fixed-int representation of the number parts</returns>
public static FInt FromParts( int PreDecimal, int PostDecimal )
{
FInt f = FInt.Create( PreDecimal, true );
if ( PostDecimal != 0 )
f.RawValue += ( FInt.Create( PostDecimal ) / 1000 ).RawValue;
return f;
}
#endregion
#region *
public static FInt operator *( FInt one, FInt other )
{
FInt fInt;
fInt.RawValue = ( one.RawValue * other.RawValue ) >> SHIFT_AMOUNT;
return fInt;
}
public static FInt operator *( FInt one, int multi )
{
return one * (FInt)multi;
}
public static FInt operator *( int multi, FInt one )
{
return one * (FInt)multi;
}
#endregion
#region /
public static FInt operator /( FInt one, FInt other )
{
FInt fInt;
fInt.RawValue = ( one.RawValue << SHIFT_AMOUNT ) / ( other.RawValue );
return fInt;
}
public static FInt operator /( FInt one, int divisor )
{
return one / (FInt)divisor;
}
public static FInt operator /( int divisor, FInt one )
{
return (FInt)divisor / one;
}
#endregion
#region %
public static FInt operator %( FInt one, FInt other )
{
FInt fInt;
fInt.RawValue = ( one.RawValue ) % ( other.RawValue );
return fInt;
}
public static FInt operator %( FInt one, int divisor )
{
return one % (FInt)divisor;
}
public static FInt operator %( int divisor, FInt one )
{
return (FInt)divisor % one;
}
#endregion
#region +
public static FInt operator +( FInt one, FInt other )
{
FInt fInt;
fInt.RawValue = one.RawValue + other.RawValue;
return fInt;
}
public static FInt operator +( FInt one, int other )
{
return one + (FInt)other;
}
public static FInt operator +( int other, FInt one )
{
return one + (FInt)other;
}
#endregion
#region -
public static FInt operator -( FInt one, FInt other )
{
FInt fInt;
fInt.RawValue = one.RawValue - other.RawValue;
return fInt;
}
public static FInt operator -( FInt one, int other )
{
return one - (FInt)other;
}
public static FInt operator -( int other, FInt one )
{
return (FInt)other - one;
}
#endregion
#region ==
public static bool operator ==( FInt one, FInt other )
{
return one.RawValue == other.RawValue;
}
public static bool operator ==( FInt one, int other )
{
return one == (FInt)other;
}
public static bool operator ==( int other, FInt one )
{
return (FInt)other == one;
}
#endregion
#region !=
public static bool operator !=( FInt one, FInt other )
{
return one.RawValue != other.RawValue;
}
public static bool operator !=( FInt one, int other )
{
return one != (FInt)other;
}
public static bool operator !=( int other, FInt one )
{
return (FInt)other != one;
}
#endregion
#region >=
public static bool operator >=( FInt one, FInt other )
{
return one.RawValue >= other.RawValue;
}
public static bool operator >=( FInt one, int other )
{
return one >= (FInt)other;
}
public static bool operator >=( int other, FInt one )
{
return (FInt)other >= one;
}
#endregion
#region <=
public static bool operator <=( FInt one, FInt other )
{
return one.RawValue <= other.RawValue;
}
public static bool operator <=( FInt one, int other )
{
return one <= (FInt)other;
}
public static bool operator <=( int other, FInt one )
{
return (FInt)other <= one;
}
#endregion
#region >
public static bool operator >( FInt one, FInt other )
{
return one.RawValue > other.RawValue;
}
public static bool operator >( FInt one, int other )
{
return one > (FInt)other;
}
public static bool operator >( int other, FInt one )
{
return (FInt)other > one;
}
#endregion
#region <
public static bool operator <( FInt one, FInt other )
{
return one.RawValue < other.RawValue;
}
public static bool operator <( FInt one, int other )
{
return one < (FInt)other;
}
public static bool operator <( int other, FInt one )
{
return (FInt)other < one;
}
#endregion
public static explicit operator int( FInt src )
{
return (int)( src.RawValue >> SHIFT_AMOUNT );
}
public static explicit operator FInt( int src )
{
return FInt.Create( src, true );
}
public static explicit operator FInt( long src )
{
return FInt.Create( src, true );
}
public static explicit operator FInt( ulong src )
{
return FInt.Create( (long)src, true );
}
public static FInt operator <<( FInt one, int Amount )
{
return FInt.Create( one.RawValue << Amount, false );
}
public static FInt operator >>( FInt one, int Amount )
{
return FInt.Create( one.RawValue >> Amount, false );
}
public override bool Equals( object obj )
{
if ( obj is FInt )
return ( (FInt)obj ).RawValue == this.RawValue;
else
return false;
}
public override int GetHashCode()
{
return RawValue.GetHashCode();
}
public override string ToString()
{
return this.RawValue.ToString();
}
}
public struct FPoint
{
public FInt X;
public FInt Y;
public static FPoint Create( FInt X, FInt Y )
{
FPoint fp;
fp.X = X;
fp.Y = Y;
return fp;
}
public static FPoint FromPoint( Point p )
{
FPoint f;
f.X = (FInt)p.X;
f.Y = (FInt)p.Y;
return f;
}
public static Point ToPoint( FPoint f )
{
return new Point( f.X.IntValue, f.Y.IntValue );
}
#region Vector Operations
public static FPoint VectorAdd( FPoint F1, FPoint F2 )
{
FPoint result;
result.X = F1.X + F2.X;
result.Y = F1.Y + F2.Y;
return result;
}
public static FPoint VectorSubtract( FPoint F1, FPoint F2 )
{
FPoint result;
result.X = F1.X - F2.X;
result.Y = F1.Y - F2.Y;
return result;
}
public static FPoint VectorDivide( FPoint F1, int Divisor )
{
FPoint result;
result.X = F1.X / Divisor;
result.Y = F1.Y / Divisor;
return result;
}
#endregion
}
ShuggyCoUk からのコメントに基づいて、これは Q12 形式であることがわかります。それは私の目的にとってかなり正確です。もちろん、バグ修正は別として、私が質問する前に、この基本的なフォーマットは既に持っていました。私が探していたのは、このような構造を使用して C# で Sqrt、Atan2、Sin、および Cos を計算する方法でした。これを処理する C# で私が知っていることは他にありませんが、Java ではOnno Hommesによる MathFPライブラリを見つけることができました。これはリベラルなソース ソフトウェア ライセンスなので、彼の関数の一部を私の目的に合わせて C# に変換しました (atan2 を修正したと思います)。楽しみ:
#region PI, DoublePI
public static FInt PI = FInt.Create( 12868, false ); //PI x 2^12
public static FInt TwoPIF = PI * 2; //radian equivalent of 260 degrees
public static FInt PIOver180F = PI / (FInt)180; //PI / 180
#endregion
#region Sqrt
public static FInt Sqrt( FInt f, int NumberOfIterations )
{
if ( f.RawValue < 0 ) //NaN in Math.Sqrt
throw new ArithmeticException( "Input Error" );
if ( f.RawValue == 0 )
return (FInt)0;
FInt k = f + FInt.OneF >> 1;
for ( int i = 0; i < NumberOfIterations; i++ )
k = ( k + ( f / k ) ) >> 1;
if ( k.RawValue < 0 )
throw new ArithmeticException( "Overflow" );
else
return k;
}
public static FInt Sqrt( FInt f )
{
byte numberOfIterations = 8;
if ( f.RawValue > 0x64000 )
numberOfIterations = 12;
if ( f.RawValue > 0x3e8000 )
numberOfIterations = 16;
return Sqrt( f, numberOfIterations );
}
#endregion
#region Sin
public static FInt Sin( FInt i )
{
FInt j = (FInt)0;
for ( ; i < 0; i += FInt.Create( 25736, false ) ) ;
if ( i > FInt.Create( 25736, false ) )
i %= FInt.Create( 25736, false );
FInt k = ( i * FInt.Create( 10, false ) ) / FInt.Create( 714, false );
if ( i != 0 && i != FInt.Create( 6434, false ) && i != FInt.Create( 12868, false ) &&
i != FInt.Create( 19302, false ) && i != FInt.Create( 25736, false ) )
j = ( i * FInt.Create( 100, false ) ) / FInt.Create( 714, false ) - k * FInt.Create( 10, false );
if ( k <= FInt.Create( 90, false ) )
return sin_lookup( k, j );
if ( k <= FInt.Create( 180, false ) )
return sin_lookup( FInt.Create( 180, false ) - k, j );
if ( k <= FInt.Create( 270, false ) )
return sin_lookup( k - FInt.Create( 180, false ), j ).Inverse;
else
return sin_lookup( FInt.Create( 360, false ) - k, j ).Inverse;
}
private static FInt sin_lookup( FInt i, FInt j )
{
if ( j > 0 && j < FInt.Create( 10, false ) && i < FInt.Create( 90, false ) )
return FInt.Create( SIN_TABLE[i.RawValue], false ) +
( ( FInt.Create( SIN_TABLE[i.RawValue + 1], false ) - FInt.Create( SIN_TABLE[i.RawValue], false ) ) /
FInt.Create( 10, false ) ) * j;
else
return FInt.Create( SIN_TABLE[i.RawValue], false );
}
private static int[] SIN_TABLE = {
0, 71, 142, 214, 285, 357, 428, 499, 570, 641,
711, 781, 851, 921, 990, 1060, 1128, 1197, 1265, 1333,
1400, 1468, 1534, 1600, 1665, 1730, 1795, 1859, 1922, 1985,
2048, 2109, 2170, 2230, 2290, 2349, 2407, 2464, 2521, 2577,
2632, 2686, 2740, 2793, 2845, 2896, 2946, 2995, 3043, 3091,
3137, 3183, 3227, 3271, 3313, 3355, 3395, 3434, 3473, 3510,
3547, 3582, 3616, 3649, 3681, 3712, 3741, 3770, 3797, 3823,
3849, 3872, 3895, 3917, 3937, 3956, 3974, 3991, 4006, 4020,
4033, 4045, 4056, 4065, 4073, 4080, 4086, 4090, 4093, 4095,
4096
};
#endregion
private static FInt mul( FInt F1, FInt F2 )
{
return F1 * F2;
}
#region Cos, Tan, Asin
public static FInt Cos( FInt i )
{
return Sin( i + FInt.Create( 6435, false ) );
}
public static FInt Tan( FInt i )
{
return Sin( i ) / Cos( i );
}
public static FInt Asin( FInt F )
{
bool isNegative = F < 0;
F = Abs( F );
if ( F > FInt.OneF )
throw new ArithmeticException( "Bad Asin Input:" + F.ToDouble() );
FInt f1 = mul( mul( mul( mul( FInt.Create( 145103 >> FInt.SHIFT_AMOUNT, false ), F ) -
FInt.Create( 599880 >> FInt.SHIFT_AMOUNT, false ), F ) +
FInt.Create( 1420468 >> FInt.SHIFT_AMOUNT, false ), F ) -
FInt.Create( 3592413 >> FInt.SHIFT_AMOUNT, false ), F ) +
FInt.Create( 26353447 >> FInt.SHIFT_AMOUNT, false );
FInt f2 = PI / FInt.Create( 2, true ) - ( Sqrt( FInt.OneF - F ) * f1 );
return isNegative ? f2.Inverse : f2;
}
#endregion
#region ATan, ATan2
public static FInt Atan( FInt F )
{
return Asin( F / Sqrt( FInt.OneF + ( F * F ) ) );
}
public static FInt Atan2( FInt F1, FInt F2 )
{
if ( F2.RawValue == 0 && F1.RawValue == 0 )
return (FInt)0;
FInt result = (FInt)0;
if ( F2 > 0 )
result = Atan( F1 / F2 );
else if ( F2 < 0 )
{
if ( F1 >= 0 )
result = ( PI - Atan( Abs( F1 / F2 ) ) );
else
result = ( PI - Atan( Abs( F1 / F2 ) ) ).Inverse;
}
else
result = ( F1 >= 0 ? PI : PI.Inverse ) / FInt.Create( 2, true );
return result;
}
#endregion
#region Abs
public static FInt Abs( FInt F )
{
if ( F < 0 )
return F.Inverse;
else
return F;
}
#endregion
Dr. Hommes の MathFP ライブラリには他にも多くの関数がありますが、それらは私が必要とする以上のものでした。ロングであり、私は FInt 構造体を使用しているため、変換ルールをすぐに確認するのは少し困難です)。
ここでコーディングされているこれらの関数の精度は、私の目的には十分ですが、さらに必要な場合は、FInt の SHIFT AMOUNT を増やすことができます。その場合、Dr. Hommes の関数の定数を 4096 で割り、新しい SHIFT AMOUNT に必要な値を掛ける必要があることに注意してください。注意を怠るとバグに遭遇する可能性が高いため、組み込みの数学関数に対してチェックを実行して、定数を誤って調整して結果が遅れないようにしてください。
これまでのところ、この FInt ロジックは、同等の組み込みの .net 関数よりも少し速くはないにしても、同じくらい高速に見えます。fp コプロセッサーがそれを決定するため、これはマシンによって明らかに異なるため、特定のベンチマークは実行していません。しかし、それらは現在私のゲームに統合されており、以前と比較してプロセッサの使用率がわずかに低下していることがわかりました (これは Q6600 クアッド コア上であり、平均して使用率が約 1% 低下しています)。
あなたの助けのためにコメントしてくれたすべての人に再び感謝します. 私が探しているものを直接教えてくれる人は誰もいませんでしたが、Google で自分で見つけるのに役立ついくつかの手がかりを教えてくれました。公に投稿された C# に匹敵するものはないように見えるので、このコードが他の誰かにとって有用であることが判明することを願っています。