2

multcomp パッケージには便利なコンパクト文字表示機能が組み込まれていますが、同様の機能がないように見えるノンパラメトリック多重比較パッケージ「nparcomp」を使用しています。CLD 機能を備えた multcompView や rcompanion などのパッケージがいくつかあることに気付きましたが、nparcomp サマリーをこれらのツールと連携させる方法がわかりません。多分ここの誰かが私を助けることができますか?nparcomp Tukey テストの要約の例を次に示します。

library(nparcomp)
pristineraw.tukey <- mctp(positif.prop.total ~ dose.log, data = pristineraw, type = "Tukey", conf.level = 0.95, asy.method = "fisher", info = FALSE)
pristineraw.tukey

$Data.Info
                Sample Size    Effect      Lower     Upper
1                   -4    4 0.7812500 0.65095081 0.8724403
2    -2.95860731484178    2 0.8229167 0.68706660 0.9077133
3    -1.99567862621736    4 0.6145833 0.49050216 0.7253656
4   -0.999565922520681    4 0.4166667 0.33069961 0.5080188
5 4.34272768626649e-05    4 0.1562500 0.08581288 0.2675807
6      1.0000043429231    2 0.2083333 0.12491776 0.3266579

$Contrast
       1  2  3  4  5 6
2 - 1 -1  1  0  0  0 0
3 - 1 -1  0  1  0  0 0
4 - 1 -1  0  0  1  0 0
5 - 1 -1  0  0  0  1 0
6 - 1 -1  0  0  0  0 1
3 - 2  0 -1  1  0  0 0
4 - 2  0 -1  0  1  0 0
5 - 2  0 -1  0  0  1 0
6 - 2  0 -1  0  0  0 1
4 - 3  0  0 -1  1  0 0
5 - 3  0  0 -1  0  1 0
6 - 3  0  0 -1  0  0 1
5 - 4  0  0  0 -1  1 0
6 - 4  0  0  0 -1  0 1
6 - 5  0  0  0  0 -1 1

$Analysis
      Estimator  Lower  Upper Statistic    p.Value
2 - 1     0.042 -0.431  0.496     0.343 0.99761714
3 - 1    -0.167 -0.586  0.323    -1.381 0.69088411
4 - 1    -0.365 -0.648  0.007    -4.062 0.05318202
5 - 1    -0.625 -0.867 -0.144    -5.151 0.02076608
6 - 1    -0.573 -0.838 -0.090    -4.801 0.02785983
3 - 2    -0.208 -0.609  0.277    -1.763 0.50620162
4 - 2    -0.406 -0.688 -0.019    -4.320 0.04250191
5 - 2    -0.667 -0.894 -0.164    -5.205 0.02026988
6 - 2    -0.615 -0.866 -0.115    -4.930 0.02523067
4 - 3    -0.198 -0.583  0.260    -1.775 0.50151321
5 - 3    -0.458 -0.746 -0.026    -4.365 0.04027067
6 - 3    -0.406 -0.712  0.028    -3.880 0.06346250
5 - 4    -0.260 -0.561  0.101    -2.997 0.14893258
6 - 4    -0.208 -0.559  0.206    -2.078 0.37679610
6 - 5     0.052 -0.380  0.466     0.476 0.99043710

$Analysis.Inf
        Estimator      Lower        Upper  Statistic    p.Value
2 - 1  0.04166667 -0.4310816  0.496466660  0.3426000 0.99761714
3 - 1 -0.16666667 -0.5861671  0.323305915 -1.3807046 0.69088411
4 - 1 -0.36458333 -0.6475061  0.006668684 -4.0618961 0.05318202
5 - 1 -0.62500000 -0.8671346 -0.143918870 -5.1509655 0.02076608
6 - 1 -0.57291667 -0.8375693 -0.090485809 -4.8010534 0.02785983
3 - 2 -0.20833333 -0.6088821  0.276867328 -1.7626807 0.50620162
4 - 2 -0.40625000 -0.6877026 -0.018637527 -4.3195377 0.04250191
5 - 2 -0.66666667 -0.8944430 -0.164222955 -5.2046137 0.02026988
6 - 2 -0.61458333 -0.8659606 -0.115293472 -4.9298694 0.02523067
4 - 3 -0.19791667 -0.5834144  0.260362074 -1.7746828 0.50151321
5 - 3 -0.45833333 -0.7460603 -0.026382368 -4.3654031 0.04027067
6 - 3 -0.40625000 -0.7115636  0.028113118 -3.8797113 0.06346250
5 - 4 -0.26041667 -0.5608547  0.100626889 -2.9973930 0.14893258
6 - 4 -0.20833333 -0.5594223  0.206138515 -2.0776563 0.37679610
6 - 5  0.05208333 -0.3804685  0.465937204  0.4758687 0.99043710

$Overall
  Quantile    p.Value
1 4.132777 0.02026988

$input
$input$formula
positif.prop.total ~ dose.log

$input$data
    dose positif negatif dead totalNb positif.prop.total      dose.log
1  0e+00      17      20    0      37         0.45945946 -4.000000e+00
2  0e+00      23      16    0      39         0.58974359 -4.000000e+00
3  0e+00      18      15    0      33         0.54545455 -4.000000e+00
4  0e+00      14      14    1      28         0.50000000 -4.000000e+00
5  1e-03      19      19    1      38         0.50000000 -2.958607e+00
6  1e-03      20      14    4      34         0.58823529 -2.958607e+00
7  1e-02      22      16    0      38         0.57894737 -1.995679e+00
8  1e-02      18      19    0      37         0.48648649 -1.995679e+00
9  1e-02      15      22    2      37         0.40540541 -1.995679e+00
10 1e-02      11      20    4      31         0.35483871 -1.995679e+00
11 1e-01      12      20    0      32         0.37500000 -9.995659e-01
12 1e-01      12      17    4      29         0.41379310 -9.995659e-01
13 1e-01       8      26    3      34         0.23529412 -9.995659e-01
14 1e-01       5      18   11      23         0.21739130 -9.995659e-01
15 1e+00       3      16   10      19         0.15789474  4.342728e-05
16 1e+00       1      16    5      17         0.05882353  4.342728e-05
17 1e+00       2      24    9      26         0.07692308  4.342728e-05
18 1e+00       7      23    6      30         0.23333333  4.342728e-05
19 1e+01       3      10    8      13         0.23076923  1.000004e+00
20 1e+01       2      20    8      22         0.09090909  1.000004e+00

$input$type
[1] "Tukey"

$input$conf.level
[1] 0.95

$input$alternative
[1] "two.sided"

$input$asy.method
[1] "fisher"

$input$plot.simci
[1] FALSE

$input$control
NULL

$input$info
[1] FALSE

$input$rounds
[1] 3

$input$contrast.matrix
NULL

$input$correlation
[1] FALSE

$input$effect
[1] "unweighted"

$input$const
[1] 0.5875441


$text.Output
[1] "True differences of relative effects are not equal to 0"

$text.output.W
[1] "Global Pseudo Ranks"

$connames
 [1] "2 - 1" "3 - 1" "4 - 1" "5 - 1" "6 - 1" "3 - 2" "4 - 2" "5 - 2" "6 - 2"
[10] "4 - 3" "5 - 3" "6 - 3" "5 - 4" "6 - 4" "6 - 5"

$AsyMethod
[1] "Fisher with 5 DF"

attr(,"class")
[1] "mctp"

4

1 に答える 1