これは、単一のキューを持つ 20 の異なるサービス提供ラインを考慮した銀行シミュレーションです。顧客は指数関数的な割合に従って到着し、平均 40 と標準偏差 20 の正規確率分布に従う時間中にサービスを受けます。
この方法を使用して、正規分布によって与えられた負の値を除外することを決定するまで、物事はうまく機能していました。
def getNormal(self):
normal = normalvariate(40,20)
if (normal>=1):
return normal
else:
getNormal(self)
私は再帰呼び出しを台無しにしていますか?うまくいかない理由がわかりません。getNormal() メソッドを次のように変更しました。
def getNormal(self):
normal = normalvariate(40,20)
while (normal <=1):
normal = normalvariate (40,20)
return normal
しかし、前の再帰ステートメントが無効になる理由に興味があります。
興味のある方のために、これは完全なソースコードです。
""" bank21: One counter with impatient customers """
from SimPy.SimulationTrace import *
from random import *
## Model components ------------------------
class Source(Process):
""" Source generates customers randomly """
def generate(self,number):
for i in range(number):
c = Customer(name = "Customer%02d"%(i,))
activate(c,c.visit(tiempoDeUso=15.0))
validateTime=now()
if validateTime<=600:
interval = getLambda(self)
t = expovariate(interval)
yield hold,self,t #esta es la rata de generación
else:
detenerGeneracion=999
yield hold,self,detenerGeneracion
class Customer(Process):
""" Customer arrives, is served and leaves """
def visit(self,tiempoDeUso=0):
arrive = now() # arrival time
print "%8.3f %s: Here I am "%(now(),self.name)
yield (request,self,counter),(hold,self,maxWaitTime)
wait = now()-arrive # waiting time
if self.acquired(counter):
print "%8.3f %s: Waited %6.3f"%(now(),self.name,wait)
tiempoDeUso=getNormal(self)
yield hold,self,tiempoDeUso
yield release,self,counter
print "%8.3f %s: Completed"%(now(),self.name)
else:
print "%8.3f %s: Waited %6.3f. I am off"%(now(),self.name,wait)
## Experiment data -------------------------
maxTime = 60*10.5 # minutes
maxWaitTime = 12.0 # minutes. maximum time to wait
## Model ----------------------------------
def model():
global counter
#seed(98989)
counter = Resource(name="Las maquinas",capacity=20)
initialize()
source = Source('Source')
firstArrival= expovariate(20.0/60.0) #chequear el expovariate
activate(source,
source.generate(number=99999),at=firstArrival)
simulate(until=maxTime)
def getNormal(self):
normal = normalvariate(40,20)
if (normal>=1):
return normal
else:
getNormal(self)
def getLambda (self):
actualTime=now()
if (actualTime <=60):
return 20.0/60.0
if (actualTime>60)and (actualTime<=120):
return 25.0/60.0
if (actualTime>120)and (actualTime<=180):
return 40.0/60.0
if (actualTime>180)and (actualTime<=240):
return 30.0/60.0
if (actualTime>240)and (actualTime<=300):
return 35.0/60.0
if (actualTime>300)and (actualTime<=360):
return 42.0/60.0
if (actualTime>360)and (actualTime<=420):
return 50.0/60.0
if (actualTime>420)and (actualTime<=480):
return 55.0/60.0
if (actualTime>480)and (actualTime<=540):
return 45.0/60.0
if (actualTime>540)and (actualTime<=600):
return 10.0/60.0
## Experiment ----------------------------------
model()