これらの置換の完全な確率ツリーは次のとおりです。
シーケンス 123 から開始すると仮定して、問題のコードでランダムな結果を生成するさまざまな方法をすべて列挙します。
123
+- 123 - swap 1 and 1 (these are positions,
| +- 213 - swap 2 and 1 not numbers)
| | +- 312 - swap 3 and 1
| | +- 231 - swap 3 and 2
| | +- 213 - swap 3 and 3
| +- 123 - swap 2 and 2
| | +- 321 - swap 3 and 1
| | +- 132 - swap 3 and 2
| | +- 123 - swap 3 and 3
| +- 132 - swap 2 and 3
| +- 231 - swap 3 and 1
| +- 123 - swap 3 and 2
| +- 132 - swap 3 and 3
+- 213 - swap 1 and 2
| +- 123 - swap 2 and 1
| | +- 321 - swap 3 and 1
| | +- 132 - swap 3 and 2
| | +- 123 - swap 3 and 3
| +- 213 - swap 2 and 2
| | +- 312 - swap 3 and 1
| | +- 231 - swap 3 and 2
| | +- 213 - swap 3 and 3
| +- 231 - swap 2 and 3
| +- 132 - swap 3 and 1
| +- 213 - swap 3 and 2
| +- 231 - swap 3 and 3
+- 321 - swap 1 and 3
+- 231 - swap 2 and 1
| +- 132 - swap 3 and 1
| +- 213 - swap 3 and 2
| +- 231 - swap 3 and 3
+- 321 - swap 2 and 2
| +- 123 - swap 3 and 1
| +- 312 - swap 3 and 2
| +- 321 - swap 3 and 3
+- 312 - swap 2 and 3
+- 213 - swap 3 and 1
+- 321 - swap 3 and 2
+- 312 - swap 3 and 3
ここで、4 番目の列 (スワップ情報の前の列) には、27 の可能な結果を持つ最終結果が含まれています。
各パターンが発生する回数を数えましょう。
123 - 4 times
132 - 5 times
213 - 5 times
231 - 5 times
312 - 4 times
321 - 4 times
=============
27 times total
無作為にスワップするコードを無限回実行すると、パターン 132、213、および 231 がパターン 123、312、および 321 よりも頻繁に発生します。これは、単純に、コードがスワップする方法によって発生する可能性が高くなるためです。 .
もちろん、コードを 30 回 (27 + 3) 実行すると、すべてのパターンが 5 回発生する可能性があると言えますが、統計を扱う場合は、長期的な傾向を調べる必要があります。
考えられる各パターンのランダム性を調べる C# コードを次に示します。
class Program
{
static void Main(string[] args)
{
Dictionary<String, Int32> occurances = new Dictionary<String, Int32>
{
{ "123", 0 },
{ "132", 0 },
{ "213", 0 },
{ "231", 0 },
{ "312", 0 },
{ "321", 0 }
};
Char[] digits = new[] { '1', '2', '3' };
Func<Char[], Int32, Int32, Char[]> swap = delegate(Char[] input, Int32 pos1, Int32 pos2)
{
Char[] result = new Char[] { input[0], input[1], input[2] };
Char temp = result[pos1];
result[pos1] = result[pos2];
result[pos2] = temp;
return result;
};
for (Int32 index1 = 0; index1 < 3; index1++)
{
Char[] level1 = swap(digits, 0, index1);
for (Int32 index2 = 0; index2 < 3; index2++)
{
Char[] level2 = swap(level1, 1, index2);
for (Int32 index3 = 0; index3 < 3; index3++)
{
Char[] level3 = swap(level2, 2, index3);
String output = new String(level3);
occurances[output]++;
}
}
}
foreach (var kvp in occurances)
{
Console.Out.WriteLine(kvp.Key + ": " + kvp.Value);
}
}
}
これは以下を出力します:
123: 4
132: 5
213: 5
231: 5
312: 4
321: 4
したがって、この答えは実際には重要ですが、純粋に数学的な答えではありません。ランダム関数が進む可能性のあるすべての方法を評価し、最終的な出力を確認する必要があります。