matlab には、私が知っている Python のコレクション (numpy、scipy、mpmath など) では使用できない特別な関数があります。
おそらく、このような機能が見つかる場所は他にもあるのではないでしょうか?
UPD質問が些細なことだと思うすべての人は、最初に引数 ~30 に対してこの関数を計算してみてください。
UPD2任意精度は良い回避策ですが、可能であれば避けたいと思います。「標準」の機械精度 (それ以上でもそれ以下でもない) と可能な最大速度が必要です。
UPD3mpmath
驚くほど不正確な結果が得られることが判明しました。標準の pythonがmath
機能する場合でも、mpmath
結果はさらに悪くなります。それはそれを絶対に無価値にします。
UPD4 erfcxを計算するさまざまな方法を比較するためのコード。
import numpy as np
def int_erfcx(x):
"Integral which gives erfcx"
from scipy import integrate
def f(xi):
return np.exp(-x*xi)*np.exp(-0.5*xi*xi)
return 0.79788456080286535595*integrate.quad(f,
0.0,min(2.0,50.0/(1.0+x))+100.0,limit=500)[0]
def my_erfcx(x):
"""M. M. Shepherd and J. G. Laframboise,
MATHEMATICS OF COMPUTATION 36, 249 (1981)
Note that it is reasonable to compute it in long double
(or whatever python has)
"""
ch_coef=[np.float128(0.1177578934567401754080e+01),
np.float128( -0.4590054580646477331e-02),
np.float128( -0.84249133366517915584e-01),
np.float128( 0.59209939998191890498e-01),
np.float128( -0.26658668435305752277e-01),
np.float128( 0.9074997670705265094e-02),
np.float128( -0.2413163540417608191e-02),
np.float128( 0.490775836525808632e-03),
np.float128( -0.69169733025012064e-04),
np.float128( 0.4139027986073010e-05),
np.float128( 0.774038306619849e-06),
np.float128( -0.218864010492344e-06),
np.float128( 0.10764999465671e-07),
np.float128( 0.4521959811218e-08),
np.float128( -0.775440020883e-09),
np.float128( -0.63180883409e-10),
np.float128( 0.28687950109e-10),
np.float128( 0.194558685e-12),
np.float128( -0.965469675e-12),
np.float128( 0.32525481e-13),
np.float128( 0.33478119e-13),
np.float128( -0.1864563e-14),
np.float128( -0.1250795e-14),
np.float128( 0.74182e-16),
np.float128( 0.50681e-16),
np.float128( -0.2237e-17),
np.float128( -0.2187e-17),
np.float128( 0.27e-19),
np.float128( 0.97e-19),
np.float128( 0.3e-20),
np.float128( -0.4e-20)]
K=np.float128(3.75)
y = (x-K) / (x+K)
y2 = np.float128(2.0)*y
(d, dd) = (ch_coef[-1], np.float128(0.0))
for cj in ch_coef[-2:0:-1]:
(d, dd) = (y2 * d - dd + cj, d)
d = y * d - dd + ch_coef[0]
return d/(np.float128(1)+np.float128(2)*x)
def math_erfcx(x):
import scipy.special as spec
return spec.erfc(x) * np.exp(x*x)
def mpmath_erfcx(x):
import mpmath
return mpmath.exp(x**2) * mpmath.erfc(x)
if __name__ == "__main__":
x=np.linspace(1.0,26.0,200)
X=np.linspace(1.0,100.0,200)
intY = np.array([int_erfcx(xx*np.sqrt(2)) for xx in X])
myY = np.array([my_erfcx(xx) for xx in X])
myy = np.array([my_erfcx(xx) for xx in x])
mathy = np.array([math_erfcx(xx) for xx in x])
mpmathy = np.array([mpmath_erfcx(xx) for xx in x])
mpmathY = np.array([mpmath_erfcx(xx) for xx in X])
print ("Integral vs exact: %g"%max(np.abs(intY-myY)/myY))
print ("math vs exact: %g"%max(np.abs(mathy-myy)/myy))
print ("mpmath vs math: %g"%max(np.abs(mpmathy-mathy)/mathy))
print ("mpmath vs integral:%g"%max(np.abs(mpmathY-intY)/intY))
exit()
私にとって、それは
Integral vs exact: 6.81236e-16
math vs exact: 7.1137e-16
mpmath vs math: 4.90899e-14
mpmath vs integral:8.85422e-13
明らかに、math
それが機能する場所では可能な限り最高の精度が得られますが、機能する場所でmpmath
はエラーカップルが桁違いに大きくなり、math
引数が大きい場合はさらに多くなります。