44

次のコードを使用して、4つのコントロールポイント間のポイントを計算し、catmull-rom曲線を生成します。

CGPoint interpolatedPosition(CGPoint p0, CGPoint p1, CGPoint p2, CGPoint p3, float t)
{
    float t3 = t * t * t;
    float t2 = t * t;

    float f1 = -0.5 * t3 + t2 - 0.5 * t;
    float f2 = 1.5 * t3 - 2.5 * t2 + 1.0;
    float f3 = -1.5 * t3 + 2.0 * t2 + 0.5 * t;
    float f4 = 0.5 * t3 - 0.5 * t2;

    float x = p0.x * f1 + p1.x * f2 + p2.x * f3 + p3.x * f4;
    float y = p0.y * f1 + p1.y * f2 + p2.y * f3 + p3.y * f4;

    return CGPointMake(x, y);
}

これは問題なく機能しますが、求心パラメータ化と呼ばれるものを作成したいと思います。これは、カーブに尖点や自己交差がないことを意味します。あるコントロールポイントを別のコントロールポイントに本当に近づけると、カーブは「小さく」なります。私はこれを行う方法を見つけようとして目をググった。誰もがこれを行う方法を知っていますか?

4

5 に答える 5

80

仕事にもこれを実装する必要がありました。最初に必要な基本的な概念は、通常のCatmull-Rom実装と変更されたバージョンの主な違いは、時間の処理方法であるということです。

キャットマル-ロムタイム

元のCatmull-Rom実装のパラメーター化されていないバージョンでは、tは0で始まり、1で終わり、P1からP2までの曲線を計算します。パラメータ化された時間の実装では、tはP0で0から始まり、4つのポイントすべてにわたって増加し続けます。したがって、均一な場合は、P1で1、P2で2になり、補間のために1から2の範囲の値を渡します。

弦の場合は|Pi+1-P|を示します 期間の変化に応じて。これは、各セグメントのポイント間の直線距離を使用して、使用する実際の長さを計算できることを意味します。求心性の場合は、各セグメントに使用する最適な時間を計算するためにわずかに異なる方法を使用します。

Catmull-Romのパラメーター化

したがって、新しい時間値をプラグインできる方程式を考え出す方法を知る必要があります。典型的なCatmull-Rom方程式には、値を計算しようとしている時間であるtが1つだけ含まれています。これらのパラメータがどのように計算されるかを説明するための最良の記事をここで見つけました:http ://www.cemyuksel.com/research/catmullrom_param/catmullrom.pdf 。彼らは曲線の数学的評価に焦点を合わせていましたが、そこにはバリーとゴールドマンの重要な公式があります。(1)

キュービックキャットマル-ロム曲線の定式化

上の図で、矢印は矢印で示された比率を「掛けた」ことを意味します。

これにより、目的の結果を得るために実際に計算を実行するために必要なものが得られます。XとYは独立して計算されますが、1D距離ではなく、2D距離に基づいて時間を変更するために「距離」係数を使用しました。

試験結果:

キャットマルロムテスト結果

(1)PJバリーとRNゴールドマン。catmull-romスプラインのクラスの再帰的評価アルゴリズム。SIGGRAPH Computer Graphics、22(4):199 {204、1988。

Javaでの最終的な実装のソースコードは次のようになります。

/**
 * This method will calculate the Catmull-Rom interpolation curve, returning
 * it as a list of Coord coordinate objects.  This method in particular
 * adds the first and last control points which are not visible, but required
 * for calculating the spline.
 *
 * @param coordinates The list of original straight line points to calculate
 * an interpolation from.
 * @param pointsPerSegment The integer number of equally spaced points to
 * return along each curve.  The actual distance between each
 * point will depend on the spacing between the control points.
 * @return The list of interpolated coordinates.
 * @param curveType Chordal (stiff), Uniform(floppy), or Centripetal(medium)
 * @throws gov.ca.water.shapelite.analysis.CatmullRomException if
 * pointsPerSegment is less than 2.
 */
public static List<Coord> interpolate(List<Coord> coordinates, int pointsPerSegment, CatmullRomType curveType)
        throws CatmullRomException {
    List<Coord> vertices = new ArrayList<>();
    for (Coord c : coordinates) {
        vertices.add(c.copy());
    }
    if (pointsPerSegment < 2) {
        throw new CatmullRomException("The pointsPerSegment parameter must be greater than 2, since 2 points is just the linear segment.");
    }

    // Cannot interpolate curves given only two points.  Two points
    // is best represented as a simple line segment.
    if (vertices.size() < 3) {
        return vertices;
    }

    // Test whether the shape is open or closed by checking to see if
    // the first point intersects with the last point.  M and Z are ignored.
    boolean isClosed = vertices.get(0).intersects2D(vertices.get(vertices.size() - 1));
    if (isClosed) {
        // Use the second and second from last points as control points.
        // get the second point.
        Coord p2 = vertices.get(1).copy();
        // get the point before the last point
        Coord pn1 = vertices.get(vertices.size() - 2).copy();

        // insert the second from the last point as the first point in the list
        // because when the shape is closed it keeps wrapping around to
        // the second point.
        vertices.add(0, pn1);
        // add the second point to the end.
        vertices.add(p2);
    } else {
        // The shape is open, so use control points that simply extend
        // the first and last segments

        // Get the change in x and y between the first and second coordinates.
        double dx = vertices.get(1).X - vertices.get(0).X;
        double dy = vertices.get(1).Y - vertices.get(0).Y;

        // Then using the change, extrapolate backwards to find a control point.
        double x1 = vertices.get(0).X - dx;
        double y1 = vertices.get(0).Y - dy;

        // Actaully create the start point from the extrapolated values.
        Coord start = new Coord(x1, y1, vertices.get(0).Z);

        // Repeat for the end control point.
        int n = vertices.size() - 1;
        dx = vertices.get(n).X - vertices.get(n - 1).X;
        dy = vertices.get(n).Y - vertices.get(n - 1).Y;
        double xn = vertices.get(n).X + dx;
        double yn = vertices.get(n).Y + dy;
        Coord end = new Coord(xn, yn, vertices.get(n).Z);

        // insert the start control point at the start of the vertices list.
        vertices.add(0, start);

        // append the end control ponit to the end of the vertices list.
        vertices.add(end);
    }

    // Dimension a result list of coordinates. 
    List<Coord> result = new ArrayList<>();
    // When looping, remember that each cycle requires 4 points, starting
    // with i and ending with i+3.  So we don't loop through all the points.
    for (int i = 0; i < vertices.size() - 3; i++) {

        // Actually calculate the Catmull-Rom curve for one segment.
        List<Coord> points = interpolate(vertices, i, pointsPerSegment, curveType);
        // Since the middle points are added twice, once for each bordering
        // segment, we only add the 0 index result point for the first
        // segment.  Otherwise we will have duplicate points.
        if (result.size() > 0) {
            points.remove(0);
        }

        // Add the coordinates for the segment to the result list.
        result.addAll(points);
    }
    return result;

}

/**
 * Given a list of control points, this will create a list of pointsPerSegment
 * points spaced uniformly along the resulting Catmull-Rom curve.
 *
 * @param points The list of control points, leading and ending with a 
 * coordinate that is only used for controling the spline and is not visualized.
 * @param index The index of control point p0, where p0, p1, p2, and p3 are
 * used in order to create a curve between p1 and p2.
 * @param pointsPerSegment The total number of uniformly spaced interpolated
 * points to calculate for each segment. The larger this number, the
 * smoother the resulting curve.
 * @param curveType Clarifies whether the curve should use uniform, chordal
 * or centripetal curve types. Uniform can produce loops, chordal can
 * produce large distortions from the original lines, and centripetal is an
 * optimal balance without spaces.
 * @return the list of coordinates that define the CatmullRom curve
 * between the points defined by index+1 and index+2.
 */
public static List<Coord> interpolate(List<Coord> points, int index, int pointsPerSegment, CatmullRomType curveType) {
    List<Coord> result = new ArrayList<>();
    double[] x = new double[4];
    double[] y = new double[4];
    double[] time = new double[4];
    for (int i = 0; i < 4; i++) {
        x[i] = points.get(index + i).X;
        y[i] = points.get(index + i).Y;
        time[i] = i;
    }

    double tstart = 1;
    double tend = 2;
    if (!curveType.equals(CatmullRomType.Uniform)) {
        double total = 0;
        for (int i = 1; i < 4; i++) {
            double dx = x[i] - x[i - 1];
            double dy = y[i] - y[i - 1];
            if (curveType.equals(CatmullRomType.Centripetal)) {
                total += Math.pow(dx * dx + dy * dy, .25);
            } else {
                total += Math.pow(dx * dx + dy * dy, .5);
            }
            time[i] = total;
        }
        tstart = time[1];
        tend = time[2];
    }
    double z1 = 0.0;
    double z2 = 0.0;
    if (!Double.isNaN(points.get(index + 1).Z)) {
        z1 = points.get(index + 1).Z;
    }
    if (!Double.isNaN(points.get(index + 2).Z)) {
        z2 = points.get(index + 2).Z;
    }
    double dz = z2 - z1;
    int segments = pointsPerSegment - 1;
    result.add(points.get(index + 1));
    for (int i = 1; i < segments; i++) {
        double xi = interpolate(x, time, tstart + (i * (tend - tstart)) / segments);
        double yi = interpolate(y, time, tstart + (i * (tend - tstart)) / segments);
        double zi = z1 + (dz * i) / segments;
        result.add(new Coord(xi, yi, zi));
    }
    result.add(points.get(index + 2));
    return result;
}

/**
 * Unlike the other implementation here, which uses the default "uniform"
 * treatment of t, this computation is used to calculate the same values but
 * introduces the ability to "parameterize" the t values used in the
 * calculation. This is based on Figure 3 from
 * http://www.cemyuksel.com/research/catmullrom_param/catmullrom.pdf
 *
 * @param p An array of double values of length 4, where interpolation
 * occurs from p1 to p2.
 * @param time An array of time measures of length 4, corresponding to each
 * p value.
 * @param t the actual interpolation ratio from 0 to 1 representing the
 * position between p1 and p2 to interpolate the value.
 * @return
 */
public static double interpolate(double[] p, double[] time, double t) {
    double L01 = p[0] * (time[1] - t) / (time[1] - time[0]) + p[1] * (t - time[0]) / (time[1] - time[0]);
    double L12 = p[1] * (time[2] - t) / (time[2] - time[1]) + p[2] * (t - time[1]) / (time[2] - time[1]);
    double L23 = p[2] * (time[3] - t) / (time[3] - time[2]) + p[3] * (t - time[2]) / (time[3] - time[2]);
    double L012 = L01 * (time[2] - t) / (time[2] - time[0]) + L12 * (t - time[0]) / (time[2] - time[0]);
    double L123 = L12 * (time[3] - t) / (time[3] - time[1]) + L23 * (t - time[1]) / (time[3] - time[1]);
    double C12 = L012 * (time[2] - t) / (time[2] - time[1]) + L123 * (t - time[1]) / (time[2] - time[1]);
    return C12;
}   
于 2013-10-09T21:52:33.590 に答える
44

これを実装するためのはるかに簡単で効率的な方法があります。これは、BarryとGoldmanの再帰的評価アルゴリズムを実装する必要なしに、別の式を使用して接線を計算するだけで済みます。

結び目(t0、t1、t2、t3)と制御点(P0、P1、P2、P3)のBarry-Goldmanパラメーター化(Tedの回答で参照)C(t)を使用すると、その閉じた形はかなり複雑になります。 、しかし、間隔(t1、t2)に制約すると、最終的にはtの3次多項式のままになります。したがって、完全に説明する必要があるのは、2つの端点t1とt2の値と接線だけです。これらの値を計算すると(私はMathematicaでこれを行いました)、

C(t1)  = P1
C(t2)  = P2
C'(t1) = (P1 - P0) / (t1 - t0) - (P2 - P0) / (t2 - t0) + (P2 - P1) / (t2 - t1)
C'(t2) = (P2 - P1) / (t2 - t1) - (P3 - P1) / (t3 - t1) + (P3 - P2) / (t3 - t2)

これを、エンドポイントに指定された値と接線を持つ3次スプラインを計算するための標準式にプラグインするだけで、不均一なCatmull-Romスプラインが得られます。注意点の1つは、上記の接線が区間(t1、t2)に対して計算されるため、標準区間(0,1)で曲線を評価する場合は、接線に係数(t2-t1)を掛けて接線を再スケーリングするだけです。 )。

Ideoneに実用的なC++の例を載せました:http://ideone.com/NoEbVM

以下のコードも貼り付けます。

#include <iostream>
#include <cmath>

using namespace std;

struct CubicPoly
{
    float c0, c1, c2, c3;

    float eval(float t)
    {
        float t2 = t*t;
        float t3 = t2 * t;
        return c0 + c1*t + c2*t2 + c3*t3;
    }
};

/*
 * Compute coefficients for a cubic polynomial
 *   p(s) = c0 + c1*s + c2*s^2 + c3*s^3
 * such that
 *   p(0) = x0, p(1) = x1
 *  and
 *   p'(0) = t0, p'(1) = t1.
 */
void InitCubicPoly(float x0, float x1, float t0, float t1, CubicPoly &p)
{
    p.c0 = x0;
    p.c1 = t0;
    p.c2 = -3*x0 + 3*x1 - 2*t0 - t1;
    p.c3 = 2*x0 - 2*x1 + t0 + t1;
}

// standard Catmull-Rom spline: interpolate between x1 and x2 with previous/following points x0/x3
// (we don't need this here, but it's for illustration)
void InitCatmullRom(float x0, float x1, float x2, float x3, CubicPoly &p)
{
    // Catmull-Rom with tension 0.5
    InitCubicPoly(x1, x2, 0.5f*(x2-x0), 0.5f*(x3-x1), p);
}

// compute coefficients for a nonuniform Catmull-Rom spline
void InitNonuniformCatmullRom(float x0, float x1, float x2, float x3, float dt0, float dt1, float dt2, CubicPoly &p)
{
    // compute tangents when parameterized in [t1,t2]
    float t1 = (x1 - x0) / dt0 - (x2 - x0) / (dt0 + dt1) + (x2 - x1) / dt1;
    float t2 = (x2 - x1) / dt1 - (x3 - x1) / (dt1 + dt2) + (x3 - x2) / dt2;

    // rescale tangents for parametrization in [0,1]
    t1 *= dt1;
    t2 *= dt1;

    InitCubicPoly(x1, x2, t1, t2, p);
}

struct Vec2D
{
    Vec2D(float _x, float _y) : x(_x), y(_y) {}
    float x, y;
};

float VecDistSquared(const Vec2D& p, const Vec2D& q)
{
    float dx = q.x - p.x;
    float dy = q.y - p.y;
    return dx*dx + dy*dy;
}

void InitCentripetalCR(const Vec2D& p0, const Vec2D& p1, const Vec2D& p2, const Vec2D& p3,
    CubicPoly &px, CubicPoly &py)
{
    float dt0 = powf(VecDistSquared(p0, p1), 0.25f);
    float dt1 = powf(VecDistSquared(p1, p2), 0.25f);
    float dt2 = powf(VecDistSquared(p2, p3), 0.25f);

    // safety check for repeated points
    if (dt1 < 1e-4f)    dt1 = 1.0f;
    if (dt0 < 1e-4f)    dt0 = dt1;
    if (dt2 < 1e-4f)    dt2 = dt1;

    InitNonuniformCatmullRom(p0.x, p1.x, p2.x, p3.x, dt0, dt1, dt2, px);
    InitNonuniformCatmullRom(p0.y, p1.y, p2.y, p3.y, dt0, dt1, dt2, py);
}


int main()
{
    Vec2D p0(0,0), p1(1,1), p2(1.1,1), p3(2,0);
    CubicPoly px, py;
    InitCentripetalCR(p0, p1, p2, p3, px, py);
    for (int i = 0; i <= 10; ++i)
        cout << px.eval(0.1f*i) << " " << py.eval(0.1f*i) << endl;
}
于 2014-06-01T13:40:41.307 に答える
3

これがTedのコードのiOSバージョンです。'z'の部分を除外しました。

.h

typedef enum {
    CatmullRomTypeUniform,
    CatmullRomTypeChordal,
    CatmullRomTypeCentripetal
} CatmullRomType ;

.m

-(NSMutableArray *)interpolate:(NSArray *)coordinates withPointsPerSegment:(NSInteger)pointsPerSegment andType:(CatmullRomType)curveType {

    NSMutableArray *vertices = [[NSMutableArray alloc] initWithArray:coordinates copyItems:YES];

    if (pointsPerSegment < 3)
        return vertices;

    //start point
    CGPoint pt1 = [vertices[0] CGPointValue];
    CGPoint pt2 = [vertices[1] CGPointValue];

    double dx = pt2.x - pt1.x;
    double dy = pt2.y - pt1.y;

    double x1 = pt1.x - dx;
    double y1 = pt1.y - dy;

    CGPoint start = CGPointMake(x1*.5, y1);

    //end point
    pt2 = [vertices[vertices.count-1] CGPointValue];
    pt1 = [vertices[vertices.count-2] CGPointValue];

    dx = pt2.x - pt1.x;
    dy = pt2.y - pt1.y;

    x1 = pt2.x + dx;
    y1 = pt2.y + dy;

    CGPoint end = CGPointMake(x1, y1);

    [vertices insertObject:[NSValue valueWithCGPoint:start] atIndex:0];
    [vertices addObject:[NSValue valueWithCGPoint:end]];

    NSMutableArray *result = [[NSMutableArray alloc] init];

    for (int i = 0; i < vertices.count - 3; i++) {
        NSMutableArray *points = [self interpolate:vertices forIndex:i withPointsPerSegment:pointsPerSegment andType:curveType];

        if ([points count] > 0)
            [points removeObjectAtIndex:0];

        [result addObjectsFromArray:points];
    }

    return result;
}

-(double)interpolate:(double*)p  time:(double*)time t:(double) t {
    double L01 = p[0] * (time[1] - t) / (time[1] - time[0]) + p[1] * (t - time[0]) / (time[1] - time[0]);
    double L12 = p[1] * (time[2] - t) / (time[2] - time[1]) + p[2] * (t - time[1]) / (time[2] - time[1]);
    double L23 = p[2] * (time[3] - t) / (time[3] - time[2]) + p[3] * (t - time[2]) / (time[3] - time[2]);
    double L012 = L01 * (time[2] - t) / (time[2] - time[0]) + L12 * (t - time[0]) / (time[2] - time[0]);
    double L123 = L12 * (time[3] - t) / (time[3] - time[1]) + L23 * (t - time[1]) / (time[3] - time[1]);
    double C12 = L012 * (time[2] - t) / (time[2] - time[1]) + L123 * (t - time[1]) / (time[2] - time[1]);
    return C12;
    }

-(NSMutableArray*)interpolate:(NSArray *)points forIndex:(NSInteger)index withPointsPerSegment:(NSInteger)pointsPerSegment andType:(CatmullRomType)curveType {
    NSMutableArray *result = [[NSMutableArray alloc] init];

    double x[4];
    double y[4];
    double time[4];

    for (int i=0; i < 4; i++) {
        x[i] = [points[index+i] CGPointValue].x;
        y[i] = [points[index+i] CGPointValue].y;
        time[i] = i;
    }

    double tstart = 1;
    double tend = 2;

    if (curveType != CatmullRomTypeUniform) {
        double total = 0;

        for (int i=1; i < 4; i++) {
            double dx = x[i] - x[i-1];
            double dy = y[i] - y[i-1];

            if (curveType == CatmullRomTypeCentripetal) {
                total += pow(dx * dx + dy * dy, 0.25);
            }
            else {
                total += pow(dx * dx + dy * dy, 0.5); //sqrt
            }
            time[i] = total;
        }
        tstart = time[1];
        tend = time[2];
    }

    int segments = pointsPerSegment - 1;

    [result addObject:points[index+1]];

    for (int i =1; i < segments; i++) {
        double xi = [self interpolate:x time:time t:tstart + (i * (tend - tstart)) / segments];
        double yi = [self interpolate:y time:time t:tstart + (i * (tend - tstart)) / segments];
        NSLog(@"(%f,%f)",xi,yi);
        [result addObject:[NSValue valueWithCGPoint:CGPointMake(xi, yi)]];
    }
    [result addObject:points[index+2]];

    return result;
}

また、上記を使用して、点の配列を描画用のベジェパスに変換する方法もあります。

-(UIBezierPath*)bezierPathFromPoints:(NSArray *)points withGranulaity:(NSInteger)granularity
{
    UIBezierPath __block *path = [[UIBezierPath alloc] init];

    NSMutableArray *curve = [self interpolate:points withPointsPerSegment:granularity andType:CatmullRomTypeCentripetal];

    CGPoint __block p0 = [curve[0] CGPointValue];

    [path moveToPoint:p0];

    //use this loop to draw lines between all points
    for (int idx=1; idx < [curve count]; idx+=1) {
        CGPoint c1 = [curve[idx] CGPointValue];

        [path addLineToPoint:c1];
    };

    //or use this loop to use actual control points (less smooth but probably faster)
//    for (int idx=0; idx < [curve count]-3; idx+=3) {
//        CGPoint c1 = [curve[idx+1] CGPointValue];
//        CGPoint c2 = [curve[idx+2] CGPointValue];
//        CGPoint p1 = [curve[idx+3] CGPointValue];
//
//        [path addCurveToPoint:p1 controlPoint1:c1 controlPoint2:c2];
//    };

    return path;
}
于 2014-05-13T20:57:11.257 に答える
1

テッドとcfhの返信をありがとう。

英語が下手で申し訳ありませんが、私の理解が正しいかどうかはよくわかりません。

http://graphics.cs.cmu.edu/nsp/course/15-462/Fall04/assts/catmullRom.pdfτと「Catmull-Rom曲線のパラメータ化」[ Yuksel etal。2009]。α

とうとう、とτはほとんど関係がないようαです。

t(i+1)-t(i)=1テッドの回答では、それが「均一な」キャットマル-ロム曲線である限り、それを見つけることができます。したがって、 http: //graphics.cs.cmu.edu/nsp/course/15-462/Fall04/assts/catmullRom.pdfのすべての曲線は「均一な」曲線ですが、パラメーター化されたCatmull-Romは1つの「均一な」曲線しか生成できません。曲線のときα=0τ(補間された)制御点で曲線がどれだけ鋭く曲がるかに影響し、一連の「均一な」曲線を生成できます。

ここで、cfhからの方程式を考慮に入れると、次のようになります。

C(t1)  = P1
C(t2)  = P2
C'(t1) = (P1 - P0) / (t1 - t0) - (P2 - P0) / (t2 - t0) + (P2 - P1) / (t2 - t1)
C'(t2) = (P2 - P1) / (t2 - t1) - (P3 - P1) / (t3 - t1) + (P3 - P2) / (t3 - t2)

のときα=0、私たちはそれを知っていt(i+1)-t(i)=1ます。とに置き換えるt(i+1)-t(i)=1と、次のようになります。C'(t1)C'(t2)

C'(t1)=1/2(P2-P0)
C'(t2)=1/2(P3-P1).

つまり、パラメータ化されたCatmull-Rom曲線によって生成された唯一の「均一な」曲線は、特殊なケースτ=1/2 http://graphics.cs.cmu.edu/nsp/course/15-462/Fall04/assts/catmullRom.pdfに適合します。 。の変更によりτ、より多くの異なる「均一な」曲線を生成できますが、α他のことに注意を払う必要があります。

于 2021-02-26T12:58:57.743 に答える
0

ランダムデータ(独自のデータと機能を使用できます)を使用して、ユニフォーム、セントリペダル、およびコーディアルCRスプライン(アルファを任意に設定できます)を比較するPython(Catmull-Rom Wikipediaページからの適応)で何かをコーディングしました正常に動作します)。エンドポイントについては、最初と最後の2ポイントからの勾配を維持する簡単な「ハック」で立ち往生していることに注意してください。ただし、このポイントと最初/失われた既知のポイントの間の距離は任意です(1%に設定しました)ドメイン...理由はまったくありません。重要なものに適用する前に、このことを念頭に置いてください):

# coding: utf-8

# In[1]:

import numpy
import matplotlib.pyplot as plt
get_ipython().magic(u'pylab inline')


# In[2]:

def CatmullRomSpline(P0, P1, P2, P3, a, nPoints=100):
  """
  P0, P1, P2, and P3 should be (x,y) point pairs that define the Catmull-Rom spline.
  nPoints is the number of points to include in this curve segment.
  """
  # Convert the points to numpy so that we can do array multiplication
  P0, P1, P2, P3 = map(numpy.array, [P0, P1, P2, P3])

  # Calculate t0 to t4
  alpha = a
  def tj(ti, Pi, Pj):
    xi, yi = Pi
    xj, yj = Pj
    return ( ( (xj-xi)**2 + (yj-yi)**2 )**0.5 )**alpha + ti

  t0 = 0
  t1 = tj(t0, P0, P1)
  t2 = tj(t1, P1, P2)
  t3 = tj(t2, P2, P3)

  # Only calculate points between P1 and P2
  t = numpy.linspace(t1,t2,nPoints)

  # Reshape so that we can multiply by the points P0 to P3
  # and get a point for each value of t.
  t = t.reshape(len(t),1)

  A1 = (t1-t)/(t1-t0)*P0 + (t-t0)/(t1-t0)*P1
  A2 = (t2-t)/(t2-t1)*P1 + (t-t1)/(t2-t1)*P2
  A3 = (t3-t)/(t3-t2)*P2 + (t-t2)/(t3-t2)*P3

  B1 = (t2-t)/(t2-t0)*A1 + (t-t0)/(t2-t0)*A2
  B2 = (t3-t)/(t3-t1)*A2 + (t-t1)/(t3-t1)*A3

  C  = (t2-t)/(t2-t1)*B1 + (t-t1)/(t2-t1)*B2
  return C

def CatmullRomChain(P,alpha):
  """
  Calculate Catmull Rom for a chain of points and return the combined curve.
  """
  sz = len(P)

  # The curve C will contain an array of (x,y) points.
  C = []
  for i in range(sz-3):
    c = CatmullRomSpline(P[i], P[i+1], P[i+2], P[i+3],alpha)
    C.extend(c)

  return C


# In[8]:

# Define a set of points for curve to go through
Points = numpy.random.rand(12,2)
x1=Points[0][0]
x2=Points[1][0]
y1=Points[0][1]
y2=Points[1][1]
x3=Points[-2][0]
x4=Points[-1][0]
y3=Points[-2][1]
y4=Points[-1][1]
dom=max(Points[:,0])-min(Points[:,0])
rng=max(Points[:,1])-min(Points[:,1])
prex=x1+sign(x1-x2)*dom*0.01
prey=(y1-y2)/(x1-x2)*dom*0.01+y1
endx=x4+sign(x4-x3)*dom*0.01
endy=(y4-y3)/(x4-x3)*dom*0.01+y4
print len(Points)
Points=list(Points)
Points.insert(0,array([prex,prey]))
Points.append(array([endx,endy]))
print len(Points)


# In[9]:

#Define alpha
a=0.

# Calculate the Catmull-Rom splines through the points
c = CatmullRomChain(Points,a)

# Convert the Catmull-Rom curve points into x and y arrays and plot
x,y = zip(*c)
plt.plot(x,y,c='green',zorder=10)

# Plot the control points
px, py = zip(*Points)
plt.plot(px,py,'or')

a=0.5
c = CatmullRomChain(Points,a)
x,y = zip(*c)
plt.plot(x,y,c='blue')

a=1.
c = CatmullRomChain(Points,a)
x,y = zip(*c)
plt.plot(x,y,c='red')


plt.grid(b=True)
plt.show()


# In[10]:

Points


# In[ ]:

元のコード:https ://en.wikipedia.org/wiki/Centripetal_Catmull%E2%80%93Rom_spline

于 2016-08-25T16:20:33.747 に答える