私は現在、自分の世界に錐台カリングを(再び)実装しようとしています。私の世界は、サイズが16x256x16(x、y、z)のチャンクで構成されています。
Frustum frustum = Frustum(engine.proj * engine.view);
foreach(chunkc, chunk; chunks) {
vec3i w_chunkc = vec3i(chunkc.x*16, chunkc.y*256, chunkc.z*16);
AABB aabb = AABB(vec3(w_chunkc), vec3(w_chunkc.x+16, w_chunkc.y+256, w_chunkc.z+16));
if(aabb in frustum) {
bind(engine, chunk);
glDrawArrays(GL_TRIANGLES, 0, cast(uint)chunk.vbo_vcount);
}
}
chunkc
全体の座標を保持しchunk
ます[0, 0, -2]
。したがって、チャンクの境界ボックスを取得するには、これらの座標に各チャンクのサイズを掛けてAABBの最小位置を取得し、各コンポーネントにサイズを追加して最大値を取得する必要があります。AABBの位置。次に、このAABBを錐台に対してチェックします。
錐台の実装:
struct Frustum {
enum {
LEFT, /// Used to access the planes array.
RIGHT, /// ditto
BOTTOM, /// ditto
TOP, /// ditto
NEAR, /// ditto
FAR /// ditto
}
Plane[6] planes; /// Holds all 6 planes of the frustum.
@safe pure nothrow:
@property ref Plane left() { return planes[LEFT]; }
@property ref Plane right() { return planes[RIGHT]; }
@property ref Plane bottom() { return planes[BOTTOM]; }
@property ref Plane top() { return planes[TOP]; }
@property ref Plane near() { return planes[NEAR]; }
@property ref Plane far() { return planes[FAR]; }
/// Constructs the frustum from a model-view-projection matrix.
/// Params:
/// mvp = a model-view-projection matrix
this(mat4 mvp) {
planes = [
// left
Plane(mvp[0][3] + mvp[0][0], // note: matrices are row-major
mvp[1][3] + mvp[1][0],
mvp[2][3] + mvp[2][0],
mvp[3][3] + mvp[3][0]),
// right
Plane(mvp[0][3] - mvp[0][0],
mvp[1][3] - mvp[1][0],
mvp[2][3] - mvp[2][0],
mvp[3][3] - mvp[3][0]),
// bottom
Plane(mvp[0][3] + mvp[0][1],
mvp[1][3] + mvp[1][1],
mvp[2][3] + mvp[2][1],
mvp[3][3] + mvp[3][1]),
// top
Plane(mvp[0][3] - mvp[0][1],
mvp[1][3] - mvp[1][1],
mvp[2][3] - mvp[2][1],
mvp[3][3] - mvp[3][1]),
// near
Plane(mvp[0][3] + mvp[0][2],
mvp[1][3] + mvp[1][2],
mvp[2][3] + mvp[2][2],
mvp[3][3] + mvp[3][2]),
// far
Plane(mvp[0][3] - mvp[0][2],
mvp[1][3] - mvp[1][2],
mvp[2][3] - mvp[2][2],
mvp[3][3] - mvp[3][2])
];
normalize();
}
/// Constructs the frustum from 6 planes.
/// Params:
/// planes = the 6 frustum planes in the order: left, right, bottom, top, near, far.
this(Plane[6] planes) {
this.planes = planes;
normalize();
}
private void normalize() {
foreach(ref e; planes) {
e.normalize();
}
}
/// Checks if the $(I aabb) intersects with the frustum.
/// Returns OUTSIDE (= 0), INSIDE (= 1) or INTERSECT (= 2).
int intersects(AABB aabb) {
vec3 hextent = aabb.half_extent;
vec3 center = aabb.center;
int result = INSIDE;
foreach(plane; planes) {
float d = dot(center, plane.normal);
float r = dot(hextent, abs(plane.normal));
if(d + r < -plane.d) {
// outside
return OUTSIDE;
}
if(d - r < -plane.d) {
result = INTERSECT;
}
}
return result;
}
/// Returns true if the $(I aabb) intersects with the frustum or is inside it.
bool opBinaryRight(string s : "in")(AABB aabb) {
return intersects(aabb) > 0;
}
}
そしてAABBの実装:
struct AABBT(type) {
alias type at; /// Holds the internal type of the AABB.
alias Vector!(at, 3) vec3; /// Convenience alias to the corresponding vector type.
vec3 min = vec3(0.0f, 0.0f, 0.0f); /// The minimum of the AABB (e.g. vec3(0, 0, 0)).
vec3 max = vec3(0.0f, 0.0f, 0.0f); /// The maximum of the AABB (e.g. vec3(1, 1, 1)).
@safe pure nothrow:
/// Constructs the AABB.
/// Params:
/// min = minimum of the AABB
/// max = maximum of the AABB
this(vec3 min, vec3 max) {
this.min = min;
this.max = max;
}
/// Constructs the AABB around N points (all points will be part of the AABB).
static AABBT from_points(vec3[] points) {
AABBT res;
foreach(v; points) {
res.expand(v);
}
return res;
}
/// Expands the AABB by another AABB.
void expand(AABBT b) {
if (min.x > b.min.x) min.x = b.min.x;
if (min.y > b.min.y) min.y = b.min.y;
if (min.z > b.min.z) min.z = b.min.z;
if (max.x < b.max.x) max.x = b.max.x;
if (max.y < b.max.y) max.y = b.max.y;
if (max.z < b.max.z) max.z = b.max.z;
}
/// Expands the AABB, so that $(I v) is part of the AABB.
void expand(vec3 v) {
if (v.x > max.x) max.x = v.x;
if (v.y > max.y) max.y = v.y;
if (v.z > max.z) max.z = v.z;
if (v.x < min.x) min.x = v.x;
if (v.y < min.y) min.y = v.y;
if (v.z < min.z) min.z = v.z;
}
/// Returns true if the AABBs intersect.
/// This also returns true if one AABB lies inside another.
bool intersects(AABBT box) const {
return (min.x < box.max.x && max.x > box.min.x) &&
(min.y < box.max.y && max.y > box.min.y) &&
(min.z < box.max.z && max.z > box.min.z);
}
/// Returns the extent of the AABB (also sometimes called size).
@property vec3 extent() const {
return max - min;
}
/// Returns the half extent.
@property vec3 half_extent() const {
return 0.5 * (max - min);
}
/// Returns the area of the AABB.
@property at area() const {
vec3 e = extent;
return 2.0 * (e.x * e.y + e.x * e.z + e.y * e.z);
}
/// Returns the center of the AABB.
@property vec3 center() const {
return 0.5 * (max + min);
}
/// Returns all vertices of the AABB, basically one vec3 per corner.
@property vec3[] vertices() const {
return [
vec3(min.x, min.y, min.z),
vec3(min.x, min.y, max.z),
vec3(min.x, max.y, min.z),
vec3(min.x, max.y, max.z),
vec3(max.x, min.y, min.z),
vec3(max.x, min.y, max.z),
vec3(max.x, max.y, min.z),
vec3(max.x, max.y, max.z),
];
}
bool opEquals(AABBT other) const {
return other.min == min && other.max == max;
}
}
alias AABBT!(float) AABB;
これまでのところ、理論的には、残念ながら、完全に間違った結果が得られます。特定の方向(z-
およびx+
)では、全世界が消滅し、他のすべての方向では、何も淘汰されません。
なぜこれがうまくいかないのか、誰かが知っていることを願っています。
編集(錐台に対してAABBをチェックする別の方法):
bool intersects2(AABB aabb) {
foreach(plane; planes) {
if(plane.a * aabb.min.x + plane.b * aabb.min.y + plane.c * aabb.min.z + plane.d > 0 )
continue;
if(plane.a * aabb.max.x + plane.b * aabb.min.y + plane.c * aabb.min.z + plane.d > 0 )
continue;
if(plane.a * aabb.min.x + plane.b * aabb.max.y + plane.c * aabb.min.z + plane.d > 0 )
continue;
if(plane.a * aabb.max.x + plane.b * aabb.max.y + plane.c * aabb.min.z + plane.d > 0 )
continue;
if(plane.a * aabb.min.x + plane.b * aabb.min.y + plane.c * aabb.max.z + plane.d > 0 )
continue;
if(plane.a * aabb.max.x + plane.b * aabb.min.y + plane.c * aabb.max.z + plane.d > 0 )
continue;
if(plane.a * aabb.min.x + plane.b * aabb.max.y + plane.c * aabb.max.z + plane.d > 0 )
continue;
if(plane.a * aabb.max.x + plane.b * aabb.max.y + plane.c * aabb.max.z + plane.d > 0 )
continue;
return false;
}
return true;
}
編集2(入力例):
MVPは次のとおりです。
[[1.18424,0,0.31849,-331.577],
[0.111198,1.51016,-0.413468,-88.5585],
[0.251117,-0.274135,-0.933724,214.897],
[0.249864,-0.272768,-0.929067,215.82]]
そして、失敗する可能性のあるAABB:
min: (14*16, 0, 13*16)
max: (14*16+16, 256, 13*16+16)