5

次のコードのレビューをリクエストしています。空間参照イメージとポリゴンがあります。新しい画像 (クリップされた領域) を保存するために、この画像をクリップするコード (以下を参照) を書きました。この関数は、フィーチャクラスのジオメトリに基づいてラスターをクリップします。ジオメトリに基づくクリッピングとは、フィーチャ クラス内のすべてのフィーチャの境界を使用してラスターをクリップすることを意味し、これらのフィーチャの最小境界矩形ではありません。

入力: ポリゴン レイヤーと 1 つ以上のラスター レイヤー 出力: 新しいラスター レイヤー、ポリゴン境界にクリップ

import osgeo.gdal
import shapefile
import struct, numpy, pylab
import numpy as np
import ogr
import osr,gdal
from shapely.geometry import Polygon
import osgeo.gdal as gdal
import sys
from osgeo import gdal, gdalnumeric, ogr, osr
import Image,ImageDraw

def world2Pixel(geoMatrix, x, y):
    """
    Uses a gdal geomatrix (gdal.GetGeoTransform()) to calculate
    the pixel location of a geospatial coordinate
    (http://geospatialpython.com/2011/02/clip-raster-using-shapefile.html)
    geoMatrix
    [0] = top left x (x Origin)
    [1] = w-e pixel resolution (pixel Width)
    [2] = rotation, 0 if image is "north up"
    [3] = top left y (y Origin)
    [4] = rotation, 0 if image is "north up"
    [5] = n-s pixel resolution (pixel Height)

    """
    ulX = geoMatrix[0]
    ulY = geoMatrix[3]
    xDist = geoMatrix[1]
    yDist = geoMatrix[5]
    rtnX = geoMatrix[2]
    rtnY = geoMatrix[4]
    pixel = np.round((x - ulX) / xDist).astype(np.int)
    line = np.round((ulY - y) / xDist).astype(np.int)
    return (pixel, line)

def Pixel2world(geoMatrix, x, y):
    ulX = geoMatrix[0]
    ulY = geoMatrix[3]
    xDist = geoMatrix[1]
    yDist = geoMatrix[5]
    coorX = (ulX + (x * xDist))
    coorY = (ulY + (y * yDist))
    return (coorX, coorY)

def RASTERClipByPolygon(inFile,poly,outFile):
    # Open the image as a read only image
    ds = osgeo.gdal.Open(inFile,gdal.GA_ReadOnly)
    # Check the ds (=dataset) has been successfully open
    # otherwise exit the script with an error message.
    if ds is None:
        raise SystemExit("The raster could not openned")
    # Get image georeferencing information.
    geoMatrix = ds.GetGeoTransform()
    ulX = geoMatrix[0]
    ulY = geoMatrix[3]
    xDist = geoMatrix[1]
    yDist = geoMatrix[5]
    rtnX = geoMatrix[2]
    rtnY = geoMatrix[4]
    # get the WKT (= Well-known text)
    dsWKT = ds.GetProjectionRef()
    # get driver information
    DriverName = ds.GetDriver().ShortName
    # open shapefile (= border of are of interest)
    shp = osgeo.ogr.Open(poly)
    if len(shp.GetLayer()) != 1:
         raise SystemExit('The shapefile must have exactly one layer')
    # Create an OGR layer from a boundary shapefile
    layer = shp.GetLayer(0)
    feature = layer.GetNextFeature()
    geometry = feature.GetGeometryRef()
    # Make sure that it is a polygon
    if geometry.GetGeometryType() != osgeo.ogr.wkbPolygon:
            raise SystemExit('This module can only load polygon')
    # get Extent of the clip area
    X_min, X_max, Y_min, Y_max = layer.GetExtent()
    # Convert the layer extent to image pixel coordinates
    uldX, uldY = world2Pixel(geoMatrix, X_min, Y_max)
    lrdX, lrdY = world2Pixel(geoMatrix, X_max, Y_min)
    # Calculate the pixel size of the new image
    pxWidth = int(lrdX - uldX)
    pxHeight = int(lrdY - uldY)
    # get the Coodinate of left-up vertex of the pixel
    X_minPixel, Y_maxPixel = Pixel2world(geoMatrix, uldX, uldY)
    # get polygon's vertices
    pts = geometry.GetGeometryRef(0)
    points = []
    for p in range(pts.GetPointCount()):
        points.append((pts.GetX(p), pts.GetY(p)))
    pnts = np.array(points).transpose()
    # work band by band
    nBands = ds.RasterCount
    # panchromatic
    if nBands == 1:
        band = ds.GetRasterBand(1)
        # get nodata value
        nodata = band.GetNoDataValue()
        # convert band in Array
        bandArray = band.ReadAsArray()
        del band
        # clip arrey
        bandArray_Area = bandArray[uldY:lrdY, uldX:lrdX]
        del bandArray
        # Create 2D Polygon Mask. Mode 'L', not '1', because
        # Numpy-1.5.0 / PIL-1.1.7 does not support the numpy.array(img)
        # conversion nicely for bivalue images.
        img = Image.new('L', (pxWidth, pxHeight), 0)
        target_ds = gdal.GetDriverByName(DriverName).Create(outFile, pxWidth, pxHeight, nBands, ds.GetRasterBand(1).DataType)
        target_ds.SetGeoTransform((X_minPixel, xDist, rtnX,Y_maxPixel, rtnY, yDist))
        pixels, line = world2Pixel(target_ds.GetGeoTransform(),pnts[0],pnts[1])
        listdata = [(pixels[i],line[i]) for i in xrange(len(pixels))]
        ImageDraw.Draw(img).polygon(listdata, outline=1, fill=1)
        mask = numpy.array(img)
        bandArray_Masked = bandArray_Area*mask
        del bandArray_Area, mask
        target_ds.GetRasterBand(nBands).WriteArray(bandArray_Masked)
        target_ds.GetRasterBand(nBands).SetNoDataValue(nodata)
    else:
        img = Image.new('L', (pxWidth, pxHeight), 0)
        target_ds = gdal.GetDriverByName(DriverName).Create(outFile, pxWidth, pxHeight, nBands, ds.GetRasterBand(1).DataType)
        target_ds.SetGeoTransform((X_min, xDist, rtnX,Y_max, rtnY, yDist))
        pixels, line = world2Pixel(target_ds.GetGeoTransform(),pnts[0],pnts[1])
        listdata = [(pixels[i],line[i]) for i in xrange(len(pixels))]
        ImageDraw.Draw(img).polygon(listdata, outline=1, fill=1)
        mask = numpy.array(img)
        for bandno in range(1, nBands+1):
            band = ds.GetRasterBand(bandno)
            nodata = band.GetNoDataValue()
            # convert band in Array
            bandArray = band.ReadAsArray()
            del band
            # clip arrey
            bandArray_Area = bandArray[ulY:lrY, ulX:lrX]
            del bandArray
            bandArray_Masked = bandArray_Area*mask
            target_ds.GetRasterBand(bandno).WriteArray(bandArray_Masked)
            del bandArray_Area
            target_ds.GetRasterBand(bandno).SetNoDataValue(nodata)
    # set the reference info
    if len(dsWKT) is 0:
        # Source has no projection (needs GDAL >= 1.7.0 to work)
        target_ds.SetProjection('LOCAL_CS["arbitrary"]')
    else:
    # Make the target raster have the same projection as the source
        target_ds.SetProjection(dsWKT)
    target_ds = None
4

1 に答える 1

3

これはRで簡単に実行できます。質問がpythonに固有のものであることに気付きました。したがって、私は編集を行いました。python 内で R を実行するか、R 内で python を実行するために使用できるラッパーがあります。パッケージ rpy2 を確認してください。

#Load library
library(raster)

## Read the shapefile
myshp <- shapefile("shapefile.shp")


## Reading the raster you want to crop
myraster <- raster('image.tif')


## create a layer only for the shape, the parameter inverse = TRUE or FALSE is imp
new_raster = mask(myraster, myshp, filename = "newras.tif", inverse = FALSE)
于 2012-11-27T13:45:48.970 に答える