上記でリンクされたJavascript実装をC#に変換しました。ここにあります:
/// <summary>
/// Given four points in 3D space, solves for a sphere such that all four points
/// lie on the sphere's surface.
/// </summary>
/// <remarks>
/// Translated from Javascript on http://www.convertalot.com/sphere_solver.html, originally
/// linked to by http://stackoverflow.com/questions/13600739/calculate-centre-of-sphere-whose-surface-contains-4-points-c.
/// </remarks>
public class CircumcentreSolver
{
private const float ZERO = 0;
private double m_X0, m_Y0, m_Z0;
private double m_Radius;
private double[,] P =
{
{ ZERO, ZERO, ZERO },
{ ZERO, ZERO, ZERO },
{ ZERO, ZERO, ZERO },
{ ZERO, ZERO, ZERO }
};
/// <summary>
/// The centre of the resulting sphere.
/// </summary>
public double[] Centre
{
get { return new double[] { this.m_X0, this.m_Y0, this.m_Z0 }; }
}
/// <summary>
/// The radius of the resulting sphere.
/// </summary>
public double Radius
{
get { return this.m_Radius; }
}
/// <summary>
/// Whether the result was a valid sphere.
/// </summary>
public bool Valid
{
get { return this.m_Radius != 0; }
}
/// <summary>
/// Computes the centre of a sphere such that all four specified points in
/// 3D space lie on the sphere's surface.
/// </summary>
/// <param name="a">The first point (array of 3 doubles for X, Y, Z).</param>
/// <param name="b">The second point (array of 3 doubles for X, Y, Z).</param>
/// <param name="c">The third point (array of 3 doubles for X, Y, Z).</param>
/// <param name="d">The fourth point (array of 3 doubles for X, Y, Z).</param>
public CircumcentreSolver(double[] a, double[] b, double[] c, double[] d)
{
this.Compute(a, b, c, d);
}
/// <summary>
/// Evaluate the determinant.
/// </summary>
private void Compute(double[] a, double[] b, double[] c, double[] d)
{
P[0, 0] = a[0];
P[0, 1] = a[1];
P[0, 2] = a[2];
P[1, 0] = b[0];
P[1, 1] = b[1];
P[1, 2] = b[2];
P[2, 0] = c[0];
P[2, 1] = c[1];
P[2, 2] = c[2];
P[3, 0] = d[0];
P[3, 1] = d[1];
P[3, 2] = d[2];
// Compute result sphere.
this.Sphere();
}
private void Sphere()
{
double r, m11, m12, m13, m14, m15;
double[,] a =
{
{ ZERO, ZERO, ZERO, ZERO },
{ ZERO, ZERO, ZERO, ZERO },
{ ZERO, ZERO, ZERO, ZERO },
{ ZERO, ZERO, ZERO, ZERO }
};
// Find minor 1, 1.
for (int i = 0; i < 4; i++)
{
a[i, 0] = P[i, 0];
a[i, 1] = P[i, 1];
a[i, 2] = P[i, 2];
a[i, 3] = 1;
}
m11 = this.Determinant(a, 4);
// Find minor 1, 2.
for (int i = 0; i < 4; i++)
{
a[i, 0] = P[i, 0] * P[i, 0] + P[i, 1] * P[i, 1] + P[i, 2] * P[i, 2];
a[i, 1] = P[i, 1];
a[i, 2] = P[i, 2];
a[i, 3] = 1;
}
m12 = this.Determinant(a, 4);
// Find minor 1, 3.
for (int i = 0; i < 4; i++)
{
a[i, 0] = P[i, 0] * P[i, 0] + P[i, 1] * P[i, 1] + P[i, 2] * P[i, 2];
a[i, 1] = P[i, 0];
a[i, 2] = P[i, 2];
a[i, 3] = 1;
}
m13 = this.Determinant(a, 4);
// Find minor 1, 4.
for (int i = 0; i < 4; i++)
{
a[i, 0] = P[i, 0] * P[i, 0] + P[i, 1] * P[i, 1] + P[i, 2] * P[i, 2];
a[i, 1] = P[i, 0];
a[i, 2] = P[i, 1];
a[i, 3] = 1;
}
m14 = this.Determinant(a, 4);
// Find minor 1, 5.
for (int i = 0; i < 4; i++)
{
a[i, 0] = P[i, 0] * P[i, 0] + P[i, 1] * P[i, 1] + P[i, 2] * P[i, 2];
a[i, 1] = P[i, 0];
a[i, 2] = P[i, 1];
a[i, 3] = P[i, 2];
}
m15 = this.Determinant(a, 4);
// Calculate result.
if (m11 == 0)
{
this.m_X0 = 0;
this.m_Y0 = 0;
this.m_Z0 = 0;
this.m_Radius = 0;
}
else
{
this.m_X0 = 0.5 * m12 / m11;
this.m_Y0 = -0.5 * m13 / m11;
this.m_Z0 = 0.5 * m14 / m11;
this.m_Radius = System.Math.Sqrt(this.m_X0 * this.m_X0 + this.m_Y0 * this.m_Y0 + this.m_Z0 * this.m_Z0 - m15 / m11);
}
}
/// <summary>
/// Recursive definition of determinate using expansion by minors.
/// </summary>
private double Determinant(double[,] a, int n)
{
int i, j, j1, j2;
double d = 0;
double[,] m =
{
{ ZERO, ZERO, ZERO, ZERO },
{ ZERO, ZERO, ZERO, ZERO },
{ ZERO, ZERO, ZERO, ZERO },
{ ZERO, ZERO, ZERO, ZERO }
};
if (n == 2)
{
// Terminate recursion.
d = a[0, 0] * a[1, 1] - a[1, 0] * a[0, 1];
}
else
{
d = 0;
for (j1 = 0; j1 < n; j1++) // Do each column.
{
for (i = 1; i < n; i++) // Create minor.
{
j2 = 0;
for (j = 0; j < n; j++)
{
if (j == j1) continue;
m[i - 1, j2] = a[i, j];
j2++;
}
}
// Sum (+/-)cofactor * minor.
d = d + System.Math.Pow(-1.0, j1) * a[0, j1] * this.Determinant(m, n - 1);
}
}
return d;
}
}