解決すべき問題は、浮体の重量と重心を考慮して、浮体の浮状態を見つけることです。
私が使用する関数は、沈下、かかと、およびトリムが与えられたときに、変位した体積と体の浮力の中心を計算します。シンケージは長さの単位で、ヒール/トリムは -90 ~ 90 の値に制限された角度です。
浮いている状態は、押しのけ容積が重量に等しく、重心が弾心と垂直の線上にあるときです。
これは、3 つの変数 (沈み込み、トリム、ヒール) と 3 つの方程式を使用した非線形ニュートン ラフソン根検出問題として実装されています。この方法は機能しますが、適切な初期推測が必要です。したがって、これに対するより良いアプローチ、または初期値を見つけるための良い方法を見つけたいと思っています。
以下は、ニュートン-ラフソン反復に使用されるニュートンおよびヤコビアン アルゴリズムのコードです。関数 volume は、sinkage、heel、および trim のパラメーターを使用します。ボリュームと浮力の中心の座標を返します。
maxabs と GSolve2 アルゴリズムも含めました。これらは Numerical Recipies から取得したものだと思います。
void jacobian(float x[], float weight, float vcg, float tcg, float lcg, float jac[][3], float f0[]) {
float h = 0.0001f;
float temp;
float j_volume, j_vcb, j_lcb, j_tcb;
float f1[3];
volume(x[0], x[1], x[2], j_volume, j_lcb, j_vcb, j_tcb);
f0[0] = j_volume-weight;
f0[1] = j_tcb-tcg;
f0[2] = j_lcb-lcg;
for (int i=0;i<3;i++) {
temp = x[i];
x[i] = temp + h;
volume(x[0], x[1], x[2], j_volume, j_lcb, j_vcb, j_tcb);
f1[0] = j_volume-weight;
f1[1] = j_tcb-tcg;
f1[2] = j_lcb-lcg;
x[i] = temp;
jac[0][i] = (f1[0]-f0[0])/h;
jac[1][i] = (f1[1]-f0[1])/h;
jac[2][i] = (f1[2]-f0[2])/h;
}
}
void newton(float weight, float vcg, float tcg, float lcg, float &sinkage, float &heel, float &trim) {
float x[3] = {10,1,1};
float accuracy = 0.000001f;
int ntryes = 30;
int i = 0;
float jac[3][3];
float max;
float f0[3];
float gauss_f0[3];
while (i < ntryes) {
jacobian(x, weight, vcg, tcg, lcg, jac, f0);
if (sqrt((f0[0]*f0[0]+f0[1]*f0[1]+f0[2]*f0[2])/2) < accuracy) {
break;
}
gauss_f0[0] = -f0[0];
gauss_f0[1] = -f0[1];
gauss_f0[2] = -f0[2];
GSolve2(jac, 3, gauss_f0);
x[0] = x[0]+gauss_f0[0];
x[1] = x[1]+gauss_f0[1];
x[2] = x[2]+gauss_f0[2];
// absmax(x) - Return absolute max value from an array
max = absmax(x);
if (max < 1) max = 1;
if (sqrt((gauss_f0[0]*gauss_f0[0]+gauss_f0[1]*gauss_f0[1]+gauss_f0[2]*gauss_f0[2])) < accuracy*max) {
x[0]=x2[0];
x[1]=x2[1];
x[2]=x2[2];
break;
}
i++;
}
sinkage = x[0];
heel = x[1];
trim = x[2];
}
int GSolve2(float a[][3],int n,float b[]) {
float x,sum,max,temp;
int i,j,k,p,m,pos;
int nn = n-1;
for (k=0;k<=n-1;k++)
{
/* pivot*/
max=fabs(a[k][k]);
pos=k;
for (p=k;p<n;p++){
if (max < fabs(a[p][k])){
max=fabs(a[p][k]);
pos=p;
}
}
if (ABS(a[k][pos]) < EPS) {
writeLog("Matrix is singular");
break;
}
if (pos != k) {
for(m=k;m<n;m++){
temp=a[pos][m];
a[pos][m]=a[k][m];
a[k][m]=temp;
}
}
/* convert to upper triangular form */
if ( fabs(a[k][k])>=1.e-6)
{
for (i=k+1;i<n;i++)
{
x = a[i][k]/a[k][k];
for (j=k+1;j<n;j++) a[i][j] = a[i][j] -a[k][j]*x;
b[i] = b[i] - b[k]*x;
}
}
else
{
writeLog("zero pivot found in line:%d",k);
return 0;
}
}
/* back substitution */
b[nn] = b[nn] / a[nn][nn];
for (i=n-2;i>=0;i--)
{
sum = b[i];
for (j=i+1;j<n;j++)
sum = sum - a[i][j]*b[j];
b[i] = sum/a[i][i];
}
return 0;
}
float absmax(float x[]) {
int i = 1;
int n = sizeof(x);
float max = x[0];
while (i < n) {
if (max < x[i]) {
max = x[i];
}
i++;
}
return max;
}