1

概要:に経度緯度マップをlattice::layerplot表示でき、 にランベルト正角円錐 (LCC) マップを表示できますspam::image。にLCCマップを表示するにはlattice::layerplot?やってはいけないことの例を以下に示します - 修正の支援を歓迎します (または単にデバッグするだけでも)。

詳細:

私はトレリス グラフィックスを ( および を介して) 使用しlatticeExtrarasterVis、投影されていない lon-lat グローバル大気データを正常に表示しました。特に、これらのプロットをマップに重ねることができます。これは、私が行っている種類の作業に不可欠です。ただし、現在、LCC を投影した一部の地域データには使用できません。データ プロットですが、オーバーレイするマップを取得できません。これはもっと大雑把な方法で行うこともできますが、または同様の方法 (例: )で行う方法を知りたいと考えています。ほぼ自己完結型の例を 2 つ以下に示します...しかし、これを行う方法を既に知っている場合は、お知らせください。デバッグは省略します。(私はプロジェクトにかなり遅れています。)ggplotggmaplattice::layerplotlattice/rasterVisggplot/ggmap

netCDF データ にはCRAN package=M3ozone_lcc.ncが付属しています ... ただし、M3 はそれを次のように提供します。

system.file("extdata/ozone_lcc.ncf", package="M3")

そのファイル拡張子 ( ) は現在、 CRAN package=raster.ncfで問題を引き起こしています (この投稿を参照してください)。そのファイルの名前を変更する (そして現在の作業ディレクトリに置く) か、そのファイル(270 kB) だけをダウンロードするか、M3 tarballから取得することができます(ただし、名前を変更することを忘れないでください!)。

次に、次の例のいずれかを実行できます (ただし、(IIRC) Windows を実行していない場合、package=M3はビルドされません (ただし ICBW))、必要に応じてシステムに合わせて定数を変更します。例 1 は、(以前の経験から) araster内の a で動作することがわかっている型のマップを生成しlevelplotます。ただし、この場合、マップとデータ/ラスターの座標値は一致しません。例 2 は古いスタイルのベース グラフィックを使用し、実際にはデータとマップの両方をプロットします。残念ながら、私はそれが生成するような地図をlevelplot. rasterこのコードを、 andを使用する他の多くのコードで動作させたいのでlevelplot、それは問題です。

例 1: 次のような出力を生成しますこれ

##### start example 1 #####

library("M3")        # http://cran.r-project.org/web/packages/M3/
library("rasterVis") # http://cran.r-project.org/web/packages/rasterVis/

## Use an example file with projection=Lambert conformal conic.
# lcc.file <- system.file("extdata/ozone_lcc.ncf", package="M3")
lcc.file <- "./ozone_lcc.nc" # unfortunate problem with raster::raster
lcc.proj4 <- M3::get.proj.info.M3(lcc.file)
lcc.proj4   # debugging
# [1] "+proj=lcc +lat_1=33 +lat_2=45 +lat_0=40 +lon_0=-97 +a=6370000 +b=6370000"
# Note +lat_0=40 +lat_1=33 +lat_2=45 for maps::map@projection (below)
lcc.crs <- sp::CRS(lcc.proj4)
lcc.pdf <- "./ozone_lcc.example1.pdf" # for output

## Read in variable with daily ozone.
# o3.raster <- raster::raster(x=lcc.file, varname="O3", crs=lcc.crs)
# ozone_lcc.nc has 4 timesteps, choose 1 at random
o3.raster <- raster::raster(x=lcc.file, varname="O3", crs=lcc.crs, level=1)
o3.raster@crs <- lcc.crs # why does the above assignment not take?
# start debugging
o3.raster
summary(coordinates(o3.raster)) # thanks, Felix Andrews!
M3::get.grid.info.M3(lcc.file)
#   end debugging

# > o3.raster
# class       : RasterLayer 
# band        : 1 
# dimensions  : 112, 148, 16576  (nrow, ncol, ncell)
# resolution  : 1, 1  (x, y)
# extent      : 0.5, 148.5, 0.5, 112.5  (xmin, xmax, ymin, ymax)
# coord. ref. : +proj=lcc +lat_1=33 +lat_2=45 +lat_0=40 +lon_0=-97 +a=6370000 +b=6370000 
# data source : .../ozone_lcc.nc 
# names       : O3 
# z-value     : 1 
# zvar        : O3 
# level       : 1 
# > summary(coordinates(o3.raster))
#        x                y         
#  Min.   :  1.00   Min.   :  1.00  
#  1st Qu.: 37.75   1st Qu.: 28.75  
#  Median : 74.50   Median : 56.50  
#  Mean   : 74.50   Mean   : 56.50  
#  3rd Qu.:111.25   3rd Qu.: 84.25  
#  Max.   :148.00   Max.   :112.00  
# > M3::get.grid.info.M3(lcc.file)
# $x.orig
# [1] -2736000
# $y.orig
# [1] -2088000
# $x.cell.width
# [1] 36000
# $y.cell.width
# [1] 36000
# $hz.units
# [1] "m"
# $ncols
# [1] 148
# $nrows
# [1] 112
# $nlays
# [1] 1

# The grid (`coordinates(o3.raster)`) is integers, because this
# data is stored using the IOAPI convention. IOAPI makes the grid
# Cartesian by using an (approximately) equiareal projection (LCC)
# and abstracting grid positioning to metadata stored in netCDF
# global attributes. Some of this spatial metadata can be accessed
# by `M3::get.grid.info.M3` (above), and some can be accessed via
# the coordinate reference system (`CRS`, see `lcc.proj4` above)

## Get US state boundaries in projection units.
state.map <- maps::map(
  database="state", projection="lambert", par=c(33,45), plot=FALSE)
#                  parameters to lambert: ^^^^^^^^^^^^
#                  see mapproj::mapproject
state.map.shp <-
  maptools::map2SpatialLines(state.map, proj4string=lcc.crs)
# start debugging
# thanks, Felix Andrews!
class(state.map.shp)
summary(do.call("rbind",
  unlist(coordinates(state.map.shp), recursive=FALSE)))
#   end debugging

# > class(state.map.shp)
# [1] "SpatialLines"
# attr(,"package")
# [1] "sp"
# >     summary(do.call("rbind", 
# +       unlist(coordinates(state.map.shp), recursive=FALSE)))
#        V1                  V2         
#  Min.   :-0.234093   Min.   :-0.9169  
#  1st Qu.:-0.000333   1st Qu.:-0.8289  
#  Median : 0.080378   Median :-0.7660  
#  Mean   : 0.058492   Mean   :-0.7711  
#  3rd Qu.: 0.162993   3rd Qu.:-0.7116  
#  Max.   : 0.221294   Max.   :-0.6343  
# I can't see how to relate these coordinates to `coordinates(o3.raster)`

pdf(file=lcc.pdf)
rasterVis::levelplot(o3.raster, margin=FALSE
) + latticeExtra::layer(
  sp::sp.lines(state.map.shp, lwd=0.8, col='darkgray'))

dev.off()
# change this for viewing PDF on your system
system(sprintf("xpdf %s", lcc.pdf))
# data looks correct, map invisible

## Try again, with lambert(40,33)
state.map <- maps::map(
  database="state", projection="lambert", par=c(40,33), plot=FALSE)
#                  parameters to lambert: ^^^^^^^^^^^^
#                  see mapproj::mapproject
state.map.shp <-
  maptools::map2SpatialLines(state.map, proj4string=lcc.crs)
# start debugging
summary(do.call("rbind", 
  unlist(coordinates(state.map.shp), recursive=FALSE)))
#   end debugging

# >     summary(do.call("rbind", 
# +       unlist(coordinates(state.map.shp), recursive=FALSE)))
#        V1                  V2         
#  Min.   :-0.2226344   Min.   :-0.9124  
#  1st Qu.:-0.0003149   1st Qu.:-0.8295  
#  Median : 0.0763322   Median :-0.7706  
#  Mean   : 0.0553948   Mean   :-0.7752  
#  3rd Qu.: 0.1546465   3rd Qu.:-0.7190  
#  Max.   : 0.2112617   Max.   :-0.6458  
# no real change from previous `coordinates(state.map.shp)`

pdf(file=lcc.pdf)
rasterVis::levelplot(o3.raster, margin=FALSE
) + latticeExtra::layer(
  sp::sp.lines(state.map.shp, lwd=0.8, col='darkgray'))

dev.off()
system(sprintf("xpdf %s", lcc.pdf))
# as expected, same as before: data looks correct, map invisible

#####   end example 1 #####

例 2: 次のような出力を生成しますこれ

##### start example 2 #####

# Following adapted from what is installed in my
# .../R/x86_64-pc-linux-gnu-library/2.14/m3AqfigExampleScript.r
# (probably by my sysadmin), which also greatly resembles
# https://wiki.epa.gov/amad/index.php/R_packages_developed_in_AMAD
# which is behind a firewall :-(

## EXAMPLE WITH LAMBERT CONIC CONFORMAL FILE.

library("M3")
library("aqfig") # http://cran.r-project.org/web/packages/aqfig/

## Use an example file with LCC projection: either local download ...
lcc.file <- "./ozone_lcc.nc"
## ... or as installed by package=M3:
# lcc.file <- system.file("extdata/ozone_lcc.ncf", package="M3")
## Choose the one that works for you.
lcc.pdf <- "./ozone_lcc.example2.pdf" # for output

##  READ AND PLOT OZONE FROM FILE WITH LCC PROJECTION.

## Read in variable with daily ozone. Note that we can give dates
## rather than date-times, and that will include all time steps
## anytime during those days.  Or, we can give lower and upper bounds
## and all time steps between these will be taken.
o3 <- M3::get.M3.var(
  file=lcc.file, var="O3", hz.units="m",
  ldatetime=as.Date("2001-07-01"), udatetime=as.Date("2001-07-04"))
# start debugging
class(o3)
summary(o3)
summary(o3$x.cell.ctr)
#   end debugging

# > class(o3)
# [1] "list"
# > summary(o3)
#            Length Class   Mode     
# data       66304  -none-  numeric  
# data.units     1  -none-  character
# x.cell.ctr   148  -none-  numeric  
# y.cell.ctr   112  -none-  numeric  
# hz.units       1  -none-  character
# rows         112  -none-  numeric  
# cols         148  -none-  numeric  
# layers         1  -none-  numeric  
# datetime       4  POSIXct numeric  
# > summary(o3$x.cell.ctr)
#     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
# -2718000 -1395000   -72000   -72000  1251000  2574000 

# Note how these grid coordinates relate to the IOAPI metadata above:
# min(o3$x.cell.ctr)      == -2718000
# == -2736000 + (36000/2) == x.orig + (x.cell.width/2)

## Get colors and map boundaries for plot.
library("fields")
col.rng <- tim.colors(20)
detach("package:fields")

## Get state boundaries in projection units.
map.lines <- M3::get.map.lines.M3.proj(
  file=lcc.file, database="state", units="m")
# start debugging
class(map.lines)
summary(map.lines)
summary(map.lines$coords)
#   end debugging

# >     class(map.lines)
# [1] "list"
# >     summary(map.lines)
#        Length Class  Mode     
# coords 23374  -none- numeric  
# units      1  -none- character
# >     summary(map.lines$coords)
#        x                  y           
#  Min.   :-2272238   Min.   :-1567156  
#  1st Qu.:   94244   1st Qu.: -673953  
#  Median :  913204   Median :  -26948  
#  Mean   :  689997   Mean   :  -84644  
#  3rd Qu.: 1744969   3rd Qu.:  524531  
#  Max.   : 2322260   Max.   : 1265778  
#  NA's   :168        NA's   :168       

## Set color boundaries to encompass the complete data range.
z.rng <- range(as.vector(o3$data))

## Make a color tile plot of the ozone for the first day (2001-07-01).
pdf(file=lcc.pdf)
image(o3$x.cell.ctr, o3$y.cell.ctr, o3$data[,,1,1],
      col=col.rng, zlim=z.rng,
      xlab="x-coord (m)", ylab="y-coord (m)")

## Put date-time string and chemical name (O3) into a format I can use
## to label the actual figure.
date.str <- format(o3$datetime[1], "%Y-%m-%d")
title(main=bquote(paste(O[3], " on ", .(date.str), sep="")))

## Put the state boundaries on the plot.
lines(map.lines$coords)

## Add legend to right of plot. NOTE: YOU CANNOT ADD TO THE PLOT
## AFTER USING vertical.image.legend(). Before making a new plot,
## open a new device or turn this device off.
vertical.image.legend(zlim=z.rng, col=col.rng)

dev.off() # close the plot if you haven't already, ...
# ... and change the following to display PDFs on your system.
system(sprintf("xpdf %s", lcc.pdf))
# data displays with state map

#####   end example 2 #####

しかし、単純な行列 (その他、しかしそれほど多くはありません) から返されM3::get.map.lines.M3.proj たものSpatialLinesから取得する方法がわかりません。(私はトレリスのドキュメントがかなり不可解であることに気付くのに十分な初心者です。) さらに、上記の IOAPI 変換を手動で行うことは避けたいと思います (ただし、古いスタイルのグラフィックスのフープを飛び越えるよりも、そうする方が確実です)。 )。sp::sp.lineslatticeExtra::layer

4

1 に答える 1

2

これを行う1つの方法は、醜いですが、線形IOAPI変換を使用して、state.mapから取得した座標を「修正」することです。maps::map例えば、

例3:次のような出力を生成しますこれ

##### start example 3 #####

library("M3")        # http://cran.r-project.org/web/packages/M3/
library("rasterVis") # http://cran.r-project.org/web/packages/rasterVis/

## Use an example file with projection=Lambert conformal conic.
# lcc.file <- system.file("extdata/ozone_lcc.ncf", package="M3")
# See notes in question regarding unfortunate problem with raster::raster,
# and remember to download or rename the file (symlinking alone will not work).
lcc.file <- "./ozone_lcc.nc"

lcc.proj4 <- M3::get.proj.info.M3(lcc.file)
lcc.proj4   # debugging
# [1] "+proj=lcc +lat_1=33 +lat_2=45 +lat_0=40 +lon_0=-97 +a=6370000 +b=6370000"
# Note +lat_0=40 +lat_1=33 +lat_2=45 for maps::map@projection (below)
lcc.crs <- sp::CRS(lcc.proj4)
lcc.pdf <- "./ozone_lcc.example3.pdf" # for output

## Read in variable with daily ozone.
# o3.raster <- raster::raster(x=lcc.file, varname="O3", crs=lcc.crs)
# ozone_lcc.nc has 4 timesteps, choose 1 at random
o3.raster <- raster::raster(x=lcc.file, varname="O3", crs=lcc.crs, level=1)
o3.raster@crs <- lcc.crs # why does the above assignment not take?
# start debugging
o3.raster
summary(coordinates(o3.raster)) # thanks, Felix Andrews!
M3::get.grid.info.M3(lcc.file)
#   end debugging

# > o3.raster
# class       : RasterLayer 
# band        : 1 
# dimensions  : 112, 148, 16576  (nrow, ncol, ncell)
# resolution  : 1, 1  (x, y)
# extent      : 0.5, 148.5, 0.5, 112.5  (xmin, xmax, ymin, ymax)
# coord. ref. : +proj=lcc +lat_1=33 +lat_2=45 +lat_0=40 +lon_0=-97 +a=6370000 +b=6370000 
# data source : .../ozone_lcc.nc 
# names       : O3 
# z-value     : 1 
# zvar        : O3 
# level       : 1 

# > summary(coordinates(o3.raster))
#        x                y         
#  Min.   :  1.00   Min.   :  1.00  
#  1st Qu.: 37.75   1st Qu.: 28.75  
#  Median : 74.50   Median : 56.50  
#  Mean   : 74.50   Mean   : 56.50  
#  3rd Qu.:111.25   3rd Qu.: 84.25  
#  Max.   :148.00   Max.   :112.00  

# > M3::get.grid.info.M3(lcc.file)
# $x.orig
# [1] -2736000
# $y.orig
# [1] -2088000
# $x.cell.width
# [1] 36000
# $y.cell.width
# [1] 36000
# $hz.units
# [1] "m"
# $ncols
# [1] 148
# $nrows
# [1] 112
# $nlays
# [1] 1

# The grid (`coordinates(o3.raster)`) is integers, because this
# data is stored using the IOAPI convention. IOAPI makes the grid
# Cartesian by using an (approximately) equiareal projection (LCC)
# and abstracting grid positioning to metadata stored in netCDF
# global attributes. Some of this spatial metadata can be accessed
# by `M3::get.grid.info.M3` (above), and some can be accessed via
# the coordinate reference system (`CRS`, see `lcc.proj4` above)

## Get US state boundaries in projection units.
state.map <- maps::map(
  database="state", projection="lambert", par=c(33,45), plot=FALSE)
#                  parameters to lambert: ^^^^^^^^^^^^
#                  see mapproj::mapproject

# replace its coordinates with
metadata.coords.IOAPI.list <- M3::get.grid.info.M3(lcc.file)
metadata.coords.IOAPI.x.orig <- metadata.coords.IOAPI.list$x.orig
metadata.coords.IOAPI.y.orig <- metadata.coords.IOAPI.list$y.orig
metadata.coords.IOAPI.x.cell.width <- metadata.coords.IOAPI.list$x.cell.width
metadata.coords.IOAPI.y.cell.width <- metadata.coords.IOAPI.list$y.cell.width
map.lines <- M3::get.map.lines.M3.proj(
  file=lcc.file, database="state", units="m")
map.lines.coords.IOAPI.x <-
  (map.lines$coords[,1] - metadata.coords.IOAPI.x.orig)/metadata.coords.IOAPI.x.cell.width
map.lines.coords.IOAPI.y <-
  (map.lines$coords[,2] - metadata.coords.IOAPI.y.orig)/metadata.coords.IOAPI.y.cell.width
map.lines.coords.IOAPI <- 
  cbind(map.lines.coords.IOAPI.x, map.lines.coords.IOAPI.y)
# start debugging
class(map.lines.coords.IOAPI)
summary(map.lines.coords.IOAPI)
#   end debugging

# >     class(map.lines.coords.IOAPI)
# [1] "matrix"
# >     summary(map.lines.coords.IOAPI)
#  map.lines.coords.IOAPI.x map.lines.coords.IOAPI.y
#  Min.   : 12.88           Min.   :14.47           
#  1st Qu.: 78.62           1st Qu.:39.28           
#  Median :101.37           Median :57.25           
#  Mean   : 95.17           Mean   :55.65           
#  3rd Qu.:124.47           3rd Qu.:72.57           
#  Max.   :140.51           Max.   :93.16           
#  NA's   :168              NA's   :168        

coordinates(state.map.shp) <- map.lines.coords.IOAPI # FAIL:
> Error in `coordinates<-`(`*tmp*`, value = c(99.0242231482288, 99.1277727928691,  : 
>   setting coordinates cannot be done on Spatial objects, where they have already been set

state.map.IOAPI <- state.map # copy
state.map.IOAPI$x <- map.lines.coords.IOAPI.x
state.map.IOAPI$y <- map.lines.coords.IOAPI.y
state.map.IOAPI$range <- c(
  min(map.lines.coords.IOAPI.x),
  max(map.lines.coords.IOAPI.x),
  min(map.lines.coords.IOAPI.y),
  max(map.lines.coords.IOAPI.y))
state.map.IOAPI.shp <-
  maptools::map2SpatialLines(state.map.IOAPI, proj4string=lcc.crs)
# start debugging
# thanks, Felix Andrews!
class(state.map.IOAPI.shp)
summary(do.call("rbind",
  unlist(coordinates(state.map.IOAPI.shp), recursive=FALSE)))
#   end debugging

# > class(state.map.IOAPI.shp)
# [1] "SpatialLines"
# attr(,"package")
# [1] "sp"

# > summary(do.call("rbind",
# +   unlist(coordinates(state.map.IOAPI.shp), recursive=FALSE)))
#        V1               V2       
#  Min.   : 12.88   Min.   :14.47  
#  1st Qu.: 78.62   1st Qu.:39.28  
#  Median :101.37   Median :57.25  
#  Mean   : 95.17   Mean   :55.65  
#  3rd Qu.:124.47   3rd Qu.:72.57  
#  Max.   :140.51   Max.   :93.16  

pdf(file=lcc.pdf)
rasterVis::levelplot(o3.raster, margin=FALSE
) + latticeExtra::layer(
  sp::sp.lines(state.map.IOAPI.shp, lwd=0.8, col='darkgray'))
dev.off()
# change this for viewing PDF on your system
system(sprintf("xpdf %s", lcc.pdf))

#####   end example 3 #####
于 2013-02-15T22:26:42.467 に答える