オンラインでこの投稿を読んでいたところ、「if ステートメント」と「abs()」関数を使用すると、MATLAB の可変ステップ ODE ソルバー (ODE45 など) に悪影響を与える可能性があると述べられていました。OP によると、時間ステップに大きな影響を与え (必要な時間ステップが低すぎる)、微分方程式が最終的に積分されたときに悪い結果が生じる可能性があります。これが本当かどうか、もしそうなら、なぜだろうと思っていました。また、修正ステップ ソルバーに頼らずに、この問題を軽減するにはどうすればよいでしょうか。私が何を意味するかについて、以下のコード例を示しました。
function [Z,Y] = sauters(We,Re,rhos,nu_G,Uinj,Dinj,theta,ts,SMDs0,Uzs0,...
Uts0,Vzs0,zspan,K)
Y0 = [SMDs0;Uzs0;Uts0;Vzs0]; %Initial Conditions
options = odeset('RelTol',1e-7,'AbsTol',1e-7); %Tolerance Levels
[Z,Y] = ode45(@func,zspan,Y0,options);
function DY = func(z,y)
DY = zeros(4,1);
%Calculate Local Droplet Reynolds Numbers
Rez = y(1)*abs(y(2)-y(4))*Dinj*Uinj/nu_G;
Ret = y(1)*abs(y(3))*Dinj*Uinj/nu_G;
%Calculate Droplet Drag Coefficient
Cdz = dragcof(Rez);
Cdt = dragcof(Ret);
%Calculate Total Relative Velocity and Droplet Reynolds Number
Utot = sqrt((y(2)-y(4))^2 + y(3)^2);
Red = y(1)*abs(Utot)*Dinj*Uinj/nu_G;
%Calculate Derivatives
%SMD
if(Red > 1)
DY(1) = -(We/8)*rhos*y(1)*(Utot*Utot/y(2))*(Cdz*(y(2)-y(4)) + ...
Cdt*y(3)) + (We/6)*y(1)*y(1)*(y(2)*DY(2) + y(3)*DY(3)) + ...
(We/Re)*K*(Red^0.5)*Utot*Utot/y(2);
elseif(Red < 1)
DY(1) = -(We/8)*rhos*y(1)*(Utot*Utot/y(2))*(Cdz*(y(2)-y(4)) + ...
Cdt*y(3)) + (We/6)*y(1)*y(1)*(y(2)*DY(2) + y(3)*DY(3)) + ...
(We/Re)*K*(Red)*Utot*Utot/y(2);
end
%Axial Droplet Velocity
DY(2) = -(3/4)*rhos*(Cdz/y(1))*Utot*(1 - y(4)/y(2));
%Tangential Droplet Velocity
DY(3) = -(3/4)*rhos*(Cdt/y(1))*Utot*(y(3)/y(2));
%Axial Gas Velocity
DY(4) = (3/8)*((ts - ts^2)/(z^2))*(cos(theta)/(tan(theta)^2))*...
(Cdz/y(1))*(Utot/y(4))*(1 - y(4)/y(2)) - y(4)/z;
end
end
関数「dragcof」は次のように指定されます。
function Cd = dragcof(Re)
if(Re <= 0.01)
Cd = (0.1875) + (24.0/Re);
elseif(Re > 0.01 && Re <= 260.0)
Cd = (24.0/Re)*(1.0 + 0.1315*Re^(0.32 - 0.05*log10(Re)));
else
Cd = (24.0/Re)*(1.0 + 0.1935*Re^0.6305);
end
end