グリットとスネのために、X 側のポリゴンを渡す Rectangle に内接する一般的な実装を次に示します。このアプローチでは、実際には絶対ポイントを計算していないことに注意してください。代わりに、原点を移動し、サーフェスを回転させ、固定長と角度を使用して原点に対してのみ線を描画しています。これは、以下の最終結果を達成するためにループで繰り返されます。これは、ロゴでタートルにコマンドを実行するのと非常によく似ています。
public partial class Form1 : Form
{
PictureBox pb = new PictureBox();
NumericUpDown nud = new NumericUpDown();
public Form1()
{
InitializeComponent();
this.Text = "Inscribed Polygon Demo";
TableLayoutPanel tlp = new TableLayoutPanel();
tlp.RowCount = 2;
tlp.RowStyles.Clear();
tlp.RowStyles.Add(new RowStyle(SizeType.AutoSize));
tlp.RowStyles.Add(new RowStyle(SizeType.Percent, 100));
tlp.ColumnCount = 2;
tlp.ColumnStyles.Clear();
tlp.ColumnStyles.Add(new ColumnStyle(SizeType.AutoSize));
tlp.ColumnStyles.Add(new ColumnStyle(SizeType.AutoSize));
tlp.Dock = DockStyle.Fill;
this.Controls.Add(tlp);
Label lbl = new Label();
lbl.Text = "Number of Sides:";
lbl.TextAlign = ContentAlignment.MiddleRight;
tlp.Controls.Add(lbl, 0, 0);
nud.Minimum = 3;
nud.Maximum = 20;
nud.AutoSize = true;
nud.ValueChanged += new EventHandler(nud_ValueChanged);
tlp.Controls.Add(nud, 1, 0);
pb.Dock = DockStyle.Fill;
pb.Paint += new PaintEventHandler(pb_Paint);
pb.SizeChanged += new EventHandler(pb_SizeChanged);
tlp.SetColumnSpan(pb, 2);
tlp.Controls.Add(pb, 0, 1);
}
void nud_ValueChanged(object sender, EventArgs e)
{
pb.Refresh();
}
void pb_SizeChanged(object sender, EventArgs e)
{
pb.Refresh();
}
void pb_Paint(object sender, PaintEventArgs e)
{
// make circle centered and 90% of PictureBox size:
int Radius = (int)((double)Math.Min(pb.ClientRectangle.Width, pb.ClientRectangle.Height) / (double)2.0 * (double).9);
Point Center = new Point((int)((double)pb.ClientRectangle.Width / (double)2.0), (int)((double)pb.ClientRectangle.Height / (double)2.0));
Rectangle rc = new Rectangle(Center, new Size(1, 1));
rc.Inflate(Radius, Radius);
InscribePolygon(e.Graphics, rc, (int)nud.Value);
}
private void InscribePolygon(Graphics G, Rectangle rc, int numSides)
{
if (numSides < 3)
throw new Exception("Number of sides must be greater than or equal to 3!");
float Radius = (float)((double)Math.Min(rc.Width, rc.Height) / 2.0);
PointF Center = new PointF((float)(rc.Location.X + rc.Width / 2.0), (float)(rc.Location.Y + rc.Height / 2.0));
RectangleF rcF = new RectangleF(Center, new SizeF(1, 1));
rcF.Inflate(Radius, Radius);
G.DrawEllipse(Pens.Black, rcF);
float Sides = (float)numSides;
float ExteriorAngle = (float)360 / Sides;
float InteriorAngle = (Sides - (float)2) / Sides * (float)180;
float SideLength = (float)2 * Radius * (float)Math.Sin(Math.PI / (double)Sides);
for (int i = 1; i <= Sides; i++)
{
G.ResetTransform();
G.TranslateTransform(Center.X, Center.Y);
G.RotateTransform((i - 1) * ExteriorAngle);
G.DrawLine(Pens.Black, new PointF(0, 0), new PointF(0, -Radius));
G.TranslateTransform(0, -Radius);
G.RotateTransform(180 - InteriorAngle / 2);
G.DrawLine(Pens.Black, new PointF(0, 0), new PointF(0, -SideLength));
}
}
}
辺の長さの計算式はこちらの正多角形電卓で取得しました。