したがって、私はこの割り当てに取り組んでおり、いくつかのビット (つまり、S1、S0、Cin/C0 (キャリーイン)、および M) によって制御される 4 ビット ALU を設計する必要があります。M の値に応じて、ALU論理演算または算術演算を実行します。3 つの差分入力 (S0、S1、Cin/C0) の値を取得する方法を見つけながら、'Sel' という名前の入力で動作する ALU を一時的に設計しました。3ビットを連結する方法がわかりません。また、論理演算の実行中にドント ケア ビットに「-」を使用しました。また、3 つのコントロール セレクトを使用していないため、モード (m) は冗長に感じます。コードの一部は役に立たないので無視してください。
何が期待されるかを説明する画像を最後に添付しました。
コード
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_unsigned.ALL;
-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC_STD.ALL;
-- Uncomment the following library declaration if instantiating
-- any Xilinx primitives in this code.
--library UNISIM;
--use UNISIM.VComponents.all;
entity codeALU is
Port ( A : in STD_LOGIC_VECTOR (3 downto 0);
B : in STD_LOGIC_VECTOR (3 downto 0);
Cin : in STD_LOGIC;
--S0 : in STD_LOGIC;
--S1 : in STD_LOGIC;
Sel : in STD_LOGIC_VECTOR (2 downto 0);
M : in STD_LOGIC;
Cout : out STD_LOGIC;
Z : out STD_LOGIC;
F : out STD_LOGIC_VECTOR (3 downto 0));
end codeALU;
architecture Behavioral of codeALU is
begin
process(A, B, M, Cin, Sel)
--variable X : STD_LOGIC_VECTOR (1 downto 0);
--variable Y : STD_LOGIC_VECTOR (2 downto 0);
variable temp : STD_LOGIC_VECTOR (4 downto 0);
variable Fx : STD_LOGIC_VECTOR (3 downto 0);
variable Cx, Zx : STD_LOGIC;
begin
--X := S1 & S0;
--Y := S1 & S0 & Cin;
Cx := '0';
Zx := '0';
if M = '0' then
Z <= '0';
case Sel is
when "00-" =>
Fx := A AND B;
Zx := '0';
when "01-" =>
Fx := A XOR B;
when "10-" =>
Fx := A OR B;
when "11-" =>
Fx := A XNOR B;
when others =>
null;
end case;
elsif M = '1' then
case Sel is
when "000" =>
temp := (B(3)&B(3 downto 1) + ('0'&A));
Fx := temp(3 downto 0);
Cx := temp(4);
when "001" =>
temp := (A(3)&A(3 downto 1) + ('0'&B));
Fx := temp(3 downto 0);
Cx := temp(4);
when "010" =>
temp := ('0'&A) + ('0'&B);
Fx := temp(3 downto 0);
Cx := temp(4);
when "011" =>
temp := ('0'&A) + ('0'&B) + ('0'&Cin);
Fx := temp(3 downto 0);
Cx := temp(4);
when "100" =>
temp := ('0'&A) + (not B);
Fx := temp(3 downto 0);
Cx := temp(4);
when "101" =>
temp := (not B) + ('0'&A) + 1;
Fx := temp(3 downto 0);
Cx := temp(4);
when "110" =>
temp := ('0'&A) + ('0'&B(3 downto 1));
Fx := temp(3 downto 0);
Cx := temp(4);
when "111" =>
temp := ('0'&B) + ('0'&A(3 downto 1));
Fx := temp(3 downto 0);
Cx := temp(4);
when others =>
null;
end case;
for i in 0 to 3 loop
Zx := Zx or Fx(i);
end loop;
Z <= not Zx;
else null;
end if;
F <= Fx;
Cout <= Cx;
end process;
end Behavioral;
テストベンチ
![LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--USE ieee.numeric_std.ALL;
ENTITY test2ALU IS
END test2ALU;
ARCHITECTURE behavior OF test2ALU IS
-- Component Declaration for the Unit Under Test (UUT)
COMPONENT codeALU
PORT(
A : IN std_logic_vector(3 downto 0);
B : IN std_logic_vector(3 downto 0);
Cin : IN std_logic;
Sel : IN std_logic_vector(2 downto 0);
M : IN std_logic;
Cout : OUT std_logic;
Z : OUT std_logic;
F : OUT std_logic_vector(3 downto 0)
);
END COMPONENT;
--Inputs
signal A : std_logic_vector(3 downto 0) := (others => '0');
signal B : std_logic_vector(3 downto 0) := (others => '0');
signal Cin : std_logic := '0';
signal Sel : std_logic_vector(2 downto 0) := (others => '0');
signal M : std_logic := '0';
--Outputs
signal Cout : std_logic;
signal Z : std_logic;
signal F : std_logic_vector(3 downto 0);
BEGIN
-- Instantiate the Unit Under Test (UUT)
uut: codeALU PORT MAP (
A => A,
B => B,
Cin => Cin,
Sel => Sel,
M => M,
Cout => Cout,
Z => Z,
F => F
);
-- Stimulus process
stim_proc: process
begin
-- hold reset state for 100 ns.
wait for 100 ns;
A <= "1001";
B <= "1111";
M <= '0';
wait for 50 ns;
Sel <= "00-";
wait for 50 ns;
Sel <= "01-";
wait for 50 ns;
Sel <= "10-";
wait for 50 ns;
Sel <= "11-";
wait for 50 ns;
M <= '1';
Sel <= "000";
wait for 50 ns;
Sel <= "001";
wait for 50 ns;
Sel <= "010";
wait for 50 ns;
Sel <= "011";
wait for 50 ns;
Sel <= "100";
wait for 50 ns;
Sel <= "101";
wait for 50 ns;
Sel <= "110";
wait for 50 ns;
Sel <= "111";
-- insert stimulus here
wait;
end process;
END;][1]