1

R を使用して、直交多項式を持つ線形回帰モデルを作成しています。私のモデルは次のとおりです。

fit=lm(log(UFB2_BITRATE_REF3) ~ poly(QPB2_REF3,2)  + B2DBSA_REF3,data=UFB) 

UFB2_FPS_REF1= 29.98 27.65 26.30 25.69 24.68 23.07 22.96 22.16 21.51 20.75 20.75 26.15 24.59 22.91 21.02 19.59 18.80 18.21 17.07 16.74 15.98 15.80
QPB2_REF1 = 36 34 32 30 28 26 24 22 20 18 16 36 34 32 30 28 26 24 22 20 18 16
B2DBSA_REF1 = DOFFSOFF DOFFSOFF DOFFSOFF DOFFSOFF DOFFSOFF DOFFSOFF DOFFSOFF DOFFSOFF DOFFSOFF DOFFSOFF DOFFSOFF DONSON   DONSON  DONSON   DONSON   DONSON   DONSON   DONSON   DONSON   DONSON   DONSON   DONSON
Levels: DOFFSOFF DONSON

対応する要約は次のとおりです。

Call:
lm(formula = log(UFB2_BITRATE_REF3) ~ poly(QPB2_REF3, 2) + B2DBSA_REF3, data = UFB)

Residuals:
       Min         1Q     Median         3Q        Max 
-0.0150795 -0.0058792  0.0006155  0.0049245  0.0120587 

Coefficients:
                               Estimate Std. Error t value Pr(>|t|)    
(Intercept)                   9.630e+00  3.302e-02  291.62  < 2e-16 ***
poly(QPB2_REF3, 2, raw = T)1 -4.385e-02  2.640e-03  -16.61 2.31e-12 ***
poly(QPB2_REF3, 2, raw = T)2 -1.827e-03  5.047e-05  -36.20  < 2e-16 ***
B2DBSA_REF3DONSON            -3.746e-02  3.566e-03  -10.51 4.16e-09 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 0.008363 on 18 degrees of freedom
Multiple R-squared: 0.9999, Adjusted R-squared: 0.9999 
F-statistic: 8.134e+04 on 3 and 18 DF,  p-value: < 2.2e-16 

次に、このモデルの関数 f(x)=a + bx + cx^2 + .... を作成します。Rでグラムシュミットアルゴリズムを使ったqr分解を使いたいです。

何か心当たりはありますか?前もって感謝します!

4

1 に答える 1