これは、@ptrblck
一部の画像のデータ増強のために Pytorch フォーラムで主に提供されているスニペットです。
タスクはセグメンテーションであるため、画像とそれに対応するマスクを拡張する必要があると思います。
どのように見えるかを知るために、変換後にいくつかの画像と対応するマスクを表示するにはどうすればよいのでしょうか?
スクリプトは次のとおりです。
import torch
from torch.utils.data.dataset import Dataset # For custom data-sets
import torchvision.transforms as transforms
import torchvision.transforms.functional as tf
from PIL import Image
import numpy
import glob
import matplotlib.pyplot as plt
from split_dataset import test_loader
import os
class CustomDataset(Dataset):
def __init__(self, image_paths, target_paths, transform_images, transform_masks):
self.image_paths = image_paths
self.target_paths = target_paths
self.transform_images = transform_images
self.transform_masks = transform_masks
self.transformm = transforms.Compose([transforms.Lambda(lambda x: tf.rotate(x, 10)),
transforms.Lambda(lambda x: tf.affine(x, angle=0,
translate=(0, 0),
scale=0.2,
shear=0.2))
])
self.transform = transforms.ToTensor()
self.mapping = {
0: 0,
255: 1
}
def mask_to_class(self, mask):
for k in self.mapping:
mask[mask==k] = self.mapping[k]
return mask
def __getitem__(self, index):
image = Image.open(self.image_paths[index])
mask = Image.open(self.target_paths[index])
if any([img in self.image_paths[index] for img in self.transform_images]):
print('applying special transformation')
image = self.transformm(image) #augmentation
if any([msk in self.target_paths[index] for msk in self.transform_masks]):
print('applying special transformation')
image = self.transformm(mask) #augmentation
t_image = image.convert('L')
t_image = self.transform(t_image) # transform to tensor for image
mask = self.transform(mask) # transform to tensor for mask
mask = torch.from_numpy(numpy.array(mask, dtype=numpy.uint8))
mask = self.mask_to_class(mask)
mask = mask.long()
return t_image, mask, self.image_paths[index], self.target_paths[index]
def __len__(self): # return count of sample we have
return len(self.image_paths)
image_paths = glob.glob("D:\\Neda\\Pytorch\\U-net\\my_data\\imagesResized\\*.png")
target_paths = glob.glob("D:\\Neda\\Pytorch\\U-net\\my_data\\labelsResized\\*.png")
transform_images = ['image_981.png', 'image_982.png','image_983.png', 'image_984.png', 'image_985.png',
'image_986.png','image_987.png','image_988.png','image_989.png','image_990.png',
'image_991.png'] # apply special transformation only on these images
print(transform_images)
#['image_991.png', 'image_991.png']
transform_masks = ['image_labeled_981.png', 'image_labeled_982.png','image_labeled_983.png', 'image_labeled_984.png',
'image_labeled_985.png', 'image_labeled_986.png','image_labeled_987.png','image_labeled_988.png',
'image_labeled_989.png','image_labeled_990.png',
'image_labeled_991.png']
dataset = CustomDataset(image_paths, target_paths, transform_images, transform_masks)
for transform_images in dataset:
#print(transform_images)
transform_images = Image.open(os.path.join(image_paths, transform_images))
transform_images = numpy.array(transform_images)
transform_masks = Image.open(os.path.join(target_paths, transform_masks))
transform_masks = numpy.array(transform_masks)
fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=1, sharex=True, sharey=True, figsize = (6,6))
img1 = ax1.imshow(transform_images, cmap='gray')
ax1.axis('off')
img2 = ax2.imshow(transform_masks)
ax1.axis('off')
plt.show()
現在、エラーが発生しています
path = os.fspath(path)
TypeError: タプルではなく、str、バイト、または os.PathLike オブジェクトが必要です