3

グループ レベルの予測変数を使用して、マルチレベルのロジスティック回帰モデルを適合させる作業を行っています。R 経由で JAGS を使用しています。モデルをパッケージrunjagsと比較すると、異なる動作が得られます。R2Jags

問題を示す再現可能な例を書き込もうとしました。以下では、二項モデルからデータをシミュレートし、データを 8 つのプロットと 2 つのブロックにインデックス付けしてから、マルチレベル ロジスティック回帰を適用して、以下のコードの成功確率 (b1および) を回復します。b2一番下までスクロールして、2 つの近似の概要を確認します。

私の質問は:

  1. これら 2 つの適合の事後分布が異なるのはなぜですか? 同じデータ、単一のモデル仕様を使用し、それぞれの前に乱数ジェネレーターを設定しています。事後分布の平均が異なるのはなぜですか? また、Rhat 値がこれほど異なるのはなぜですか?
# -------------------------------------------------------------------
# Loading required packages
# -------------------------------------------------------------------
library(rjags) 
library(R2jags)
library(MCMCvis)

パッケージのバージョン情報:

jags.version()
[1] ‘4.3.0’

R2jags_0.5-7   MCMCvis_0.13.5 rjags_4-10
# -------------------------------------------------------------------
# Simulate data
# -------------------------------------------------------------------
set.seed(10)

N.plots = 8
N.blocks = 2
trials=400

n = rep(100,trials)
N=length(n)
plotReps=N/N.plots
blockReps=N/N.blocks

# Block 1
b1<-rep(c(.25,.75,.9,.1),each=plotReps)-.05
# Block 2
b2<-rep(c(.25,.75,.9,.1),each=plotReps)+.05

y = rbinom(trials, 100, p = c(b1,b2))

# vectors indexing plots and blocks
plot = rep(1:8,each=plotReps)
block = rep(1:2,each=blockReps)

# pass data to list for JAGS
data = list(
  y = y,
  n = n,
  N = length(n),
  plot = plot,
  block= block,
  N.plots = N.plots,
  N.blocks = N.blocks
)
# -------------------------------------------------------------------
# Code for JAGS model
# -------------------------------------------------------------------

modelString <- "model { 
  ## Priors

  # hyperpriors
  mu.alpha ~ dnorm(0, 0.0001)

  sigma.plot ~ dunif(0,100) 
  tau.plot <- 1 / sigma.plot^2

  sigma.block ~ dunif(0,100) 
  tau.block <- 1 / sigma.block^2

  # priors 
  for(i in 1:N.plots){     
    eps.plot[i]~dnorm(0,tau.plot)
  }

  for(i in 1:N.blocks){
    eps.block[i]~dnorm(0,tau.block)
  }

  # Likelihood
  for(i in 1:N){
    logit(p[i]) <- mu.alpha + eps.plot[plot[i]] + eps.block[block[i]]
    y[i] ~ dbin(p[i], n[i])

  }
}"
# -------------------------------------------------------------------
# Initial values
# -------------------------------------------------------------------
# set inits for rjags
inits = list(list(mu.alpha = 0,sigma.plot=2,sigma.block=2),
             list(mu.alpha = 0,sigma.plot=2,sigma.block=2),
             list(mu.alpha = 0,sigma.plot=2,sigma.block=2)) 

# set inits function for R2jags
initsFun<-function(){list(
  mu.alpha=0,
  sigma.plot=2,
  sigma.block=2
)}
# -------------------------------------------------------------------
# Set JAGS parameters and random seed
# -------------------------------------------------------------------
# scalars that specify the 
# number of iterations in the chain for adaptation
# number of iterations for burn-in
# number of samples in the final chain
n.adapt = 500
n.update = 5000
n.iterations = 1000
n.thin = 1
parsToMonitor = c("mu.alpha","sigma.plot","sigma.block","eps.plot","eps.block")
# -------------------------------------------------------------------
# Call to JAGS via rjags
# -------------------------------------------------------------------
set.seed(2)
# tuning (n.adapt)
jm = jags.model(textConnection(modelString), data = data, inits = inits,
                n.chains = length(inits), n.adapt = n.adapt)

# burn-in (n.update)
update(jm, n.iterations = n.update)

# chain (n.iter)
samples.rjags = coda.samples(jm, variable.names = c(parsToMonitor), n.iter = n.iterations, thin = n.thin)
# -------------------------------------------------------------------
# Call to JAGS via R2jags
# -------------------------------------------------------------------
set.seed(2)
samples.R2jags <-jags(data=data,inits=initsFun,parameters.to.save=parsToMonitor,model.file=textConnection(modelString),
                      n.thin=n.thin,n.chains=length(inits),n.burnin=n.adapt,n.iter=n.iterations,DIC=T)
# -------------------------------------------------------------------
# Summarize posteriors using MCMCvis
# -------------------------------------------------------------------
sum.rjags <- MCMCvis::MCMCsummary(samples.rjags,params=c("mu.alpha","eps.plot","sigma.plot","sigma.block","eps.block"))
sum.rjags

sum.R2jags2 <- MCMCvis::MCMCsummary(samples.R2jags,params=c("mu.alpha","eps.plot","sigma.plot","sigma.block","eps.block"))
sum.R2jags2

rjags フィットからの出力は次のとおりです。

                     mean         sd         2.5%         50%       97.5% Rhat n.eff
mu.alpha      0.07858079 21.2186737 -48.99286669 -0.04046538 45.16440893 1.11  4063
eps.plot[1]  -1.77570813  0.8605892  -3.45736942 -1.77762035 -0.02258692 1.00  2857
eps.plot[2]  -0.37359614  0.8614370  -2.07913650 -0.37581522  1.36611635 1.00  2846
eps.plot[3]   0.43387001  0.8612820  -1.24273657  0.42332033  2.20253810 1.00  2833
eps.plot[4]   1.31279883  0.8615840  -0.38750596  1.31179143  3.06307745 1.00  2673
eps.plot[5]  -1.34317034  0.8749558  -3.06843578 -1.34747145  0.44451006 1.00  2664
eps.plot[6]  -0.40064738  0.8749104  -2.13233876 -0.41530587  1.37910977 1.00  2677
eps.plot[7]   0.36515253  0.8738092  -1.35364716  0.35784379  2.15597251 1.00  2692
eps.plot[8]   1.71826293  0.8765952  -0.01057452  1.70627507  3.50314147 1.00  2650
sigma.plot    1.67540914  0.6244529   0.88895789  1.53080631  3.27418094 1.01   741
sigma.block  19.54287007 26.1348353   0.14556791  6.68959552 93.21927035 1.22    94
eps.block[1] -0.55924545 21.2126905 -46.34099332 -0.24261169 48.81435107 1.11  4009
eps.block[2]  0.35658731 21.2177540 -44.65998407  0.25801739 49.31921639 1.11  4457

R2jags フィットからの出力は次のとおりです。

                   mean         sd         2.5%         50%       97.5% Rhat n.eff
mu.alpha     -0.09358847 19.9972601 -45.81215297 -0.03905447 47.32288503 1.04  1785
eps.plot[1]  -1.70448172  0.8954054  -3.41749845 -1.70817566  0.08187877 1.00  1141
eps.plot[2]  -0.30070570  0.8940527  -2.01982416 -0.30458798  1.46954632 1.00  1125
eps.plot[3]   0.50295713  0.8932038  -1.20985348  0.50458106  2.29271214 1.01  1156
eps.plot[4]   1.37862742  0.8950657  -0.34965321  1.37627777  3.19545411 1.01  1142
eps.plot[5]  -1.40421696  0.8496819  -3.10743244 -1.41880218  0.25843323 1.01  1400
eps.plot[6]  -0.45810643  0.8504694  -2.16755579 -0.47087931  1.20827684 1.01  1406
eps.plot[7]   0.30319019  0.8492508  -1.39045509  0.28668886  1.96325582 1.01  1500
eps.plot[8]   1.65474420  0.8500635  -0.03632306  1.63399429  3.29585024 1.01  1395
sigma.plot    1.66375532  0.6681285   0.88231891  1.49564854  3.45544415 1.04   304
sigma.block  20.64694333 23.0418085   0.41071589 11.10308188 85.56459886 1.09    78
eps.block[1] -0.45810120 19.9981027 -46.85060339 -0.33090743 46.27709625 1.04  1795
eps.block[2]  0.58896195 19.9552211 -46.39310677  0.28183123 46.57874408 1.04  1769

2 つの適合からの mu.alpha のトレース プロットを次に示します。まず、rjags フィットから:

rjags フィットからの mu.alpha のトレース プロット

次に、R2jags フィットから:

R2Jags フィットからの mu.alpha のトレース プロット

4

2 に答える 2