4

次のシナリオでは、gremlin でクエリを理解するのに苦労しています。これが有向グラフです(循環する場合があります)。

ここに画像の説明を入力

ノード「ジェーン」から始めて、上位 N の有利なノードを取得したいと考えています。ここで、有利なノードは次のように定義されています。

favor(Jane->Lisa) = edge(Jane,Lisa) / total weight from outwards edges of Lisa
favor(Jane->Thomas) = favor(Jane->Thomas) + favor(Jane->Lisa) * favor(Lisa->Thomas)

favor(Jane->Jerryd) = favor(Jane->Thomas) * favor(Thomas->Jerryd) + favor(Jane->Lisa) * favor(Lisa->Jerryd)

favor(Jane->Jerryd) = [favor(Jane->Thomas) + favor(Jane->Lisa) * favor(Lisa->Thomas)] * favor(Thomas->Jerryd) + favor(Jane->Lisa) * favor(Lisa->Jerryd)


and so .. on

これは、私が意味するものを手計算した同じグラフです。

ここに画像の説明を入力

これはプログラミングで簡単に転送できますが、gremlin や sparql を使用して正確にクエリを実行できるかどうかはわかりません。

この例のグラフを作成するクエリは次のとおりです。

g
.addV('person').as('1').property(single, 'name', 'jane')
.addV('person').as('2').property(single, 'name', 'thomas')
.addV('person').as('3').property(single, 'name', 'lisa')
.addV('person').as('4').property(single, 'name', 'wyd')
.addV('person').as('5').property(single, 'name', 'jerryd')
.addE('favor').from('1').to('2').property('weight', 10)
.addE('favor').from('1').to('3').property('weight', 20)
.addE('favor').from('3').to('2').property('weight', 90)
.addE('favor').from('2').to('4').property('weight', 50)
.addE('favor').from('2').to('5').property('weight', 90)
.addE('favor').from('3').to('5').property('weight', 100)

私が探しているのは次のとおりです。

[Lisa, computedFavor]
[Thomas, computedFavor]
[Jerryd, computedFavor]
[Wyd, computedFavor]

重みを調整するために巡回グラフを連携させるのに苦労しています。これまでにクエリを実行できた場所は次のとおりです: https://gremlify.com/f2r0zy03oxc/2

g.V().has('name','jane').       // our starting node
   repeat(                      
      union(                    
         outE()                 // get only outwards edges
      ).
      otherV().simplePath()).   // produce simple path
   emit().  
   times(10).                   // max depth of 10
   path().                      // attain path
   by(valueMap())

stephen mallette からのコメントへの対応:

favor(Jane->Jerryd) = 
    favor(Jane->Thomas) * favor(Thomas->Jerryd) 
  + favor(Jane->Lisa) * favor(Lisa->Jerryd)

// note we can expand on favor(Jane->Thomas) in above expression
// 
// favor(Jane->Thomas) is favor(Jane->Thomas)@directEdge +
//                        favor(Jane->Lisa) * favor(Lisa->Thomas)
//

計算例

Jane to Lisa                   => 20/(10+20)         => 2/3
Lisa to Jerryd                 => 100/(100+90)       => 10/19
Jane to Lisa to Jerryd         => 2/3*(10/19)

Jane to Thomas (directly)      => 10/(10+20)         => 1/3
Jane to Lisa to Thomas         => 2/3 * 90/(100+90)  => 2/3 * 9/19
Jane to Thomas                 => 1/3 + (2/3 * 9/19)

Thomas to Jerryd               => 90/(90+50)         => 9/14
Jane to Thomas to Jerryd       => [1/3 + (2/3 * 9/19)] * (9/14)

Jane to Jerryd:
= Jane to Lisa to Jerryd + Jane to Thomas to Jerryd
= 2/3 * (10/19) + [1/3 + (2/3 * 9/19)] * (9/14)

以下は疑似コードの一部です。

def get_favors(graph, label="jane", starting_favor=1):
  start = graph.findNode(label)
  queue = [(start, starting_favor)]
  favors = {}
  seen = set()
  
  while queue:
    node, curr_favor = queue.popleft()

    # get total weight (out edges) from this node
    total_favor = 0
    for (edgeW, outNode) in node.out_edges:
       total_favor = total_favor + edgeW

    for (edgeW, outNode) in node.out_edges:
    
       # if there are no favors for this node
       # take current favor and provide proportional favor
       if outNode not in favors:
          favors[outNode] = curr_favor * (edgeW / total_favor)

       # it already has some favor, so we add to it
       # we add proportional favor
       else:
          favors[outNode] += curr_favor * (edgeW / total_favor)

       # if we have seen this edge, and node ignore
       # otherwise, transverse
    
       if (edgeW, outNode) not in seen:
          seen.add((edgeW, outNode))
          queue.append((outNode, favors[outNode]))

   # sort favor by value and return top X
   return favors

4

2 に答える 2